FINAL JEE-MAIN EXAMINATION - JANUARY, 2024

(Held On Wednesday 31 January, 2024)

M ATHEM ATICS

SECTION-A

- The number of ways in which midentical apples can be distributed among three children such that $r \boxtimes 2cos$ each child gets at least γ apples is
 - (1) ٤ . ٦
 - (٢) ١٣٠
 - (4) 151
 - (٤) ١٣٦

Ans. (ξ)

Sol. After giving rapples to each child to apples left now \o apples can be distributed in \o □¬□ \C □¬≥ ways

- Let A (a, b), B(\forall , \exists) and $(\neg \neg, \neg \land)$ respectively denote the centroid ${}_{^{\iota}}$ circumcentre and orthocentre Sol. - $z1 \boxtimes z2 \boxtimes 5$ of a triangle. Then, the distance of the point $P(\gamma a + \gamma, \gamma b + \delta)$ from the line $\gamma x + \gamma y - \xi = \delta$ measured parallel to the line $x - y - y = \cdot$ is
 - (1) $\frac{15\sqrt{5}}{7}$
 - $(r) \frac{17\sqrt{5}}{6}$
 - $(r) \frac{17\sqrt{5}}{7}$
- (٤) Ans. (٣) 5

$$\begin{array}{c|cccc}
 & 2:1 \\
\hline
C & A & B \\
 & (-6, -8) & (a, b) & (3, 4)
\end{array}$$

 $\boxtimes a\boxtimes 0$, $b=0\boxtimes P\boxtimes 3,5\boxtimes$

Distance from P measured along x - y - y = v $\boxtimes x \boxtimes 3 \boxtimes r \cos \boxtimes$, $y = 5 + r \sin \boxtimes$

TEST PAPER WITH SOLUTION

TIME: 3:00 PM to 6:00 PM

Wheretan □ □2

Let z_1 and z_2 be two complex number such that z_1

+ z = ∘ and

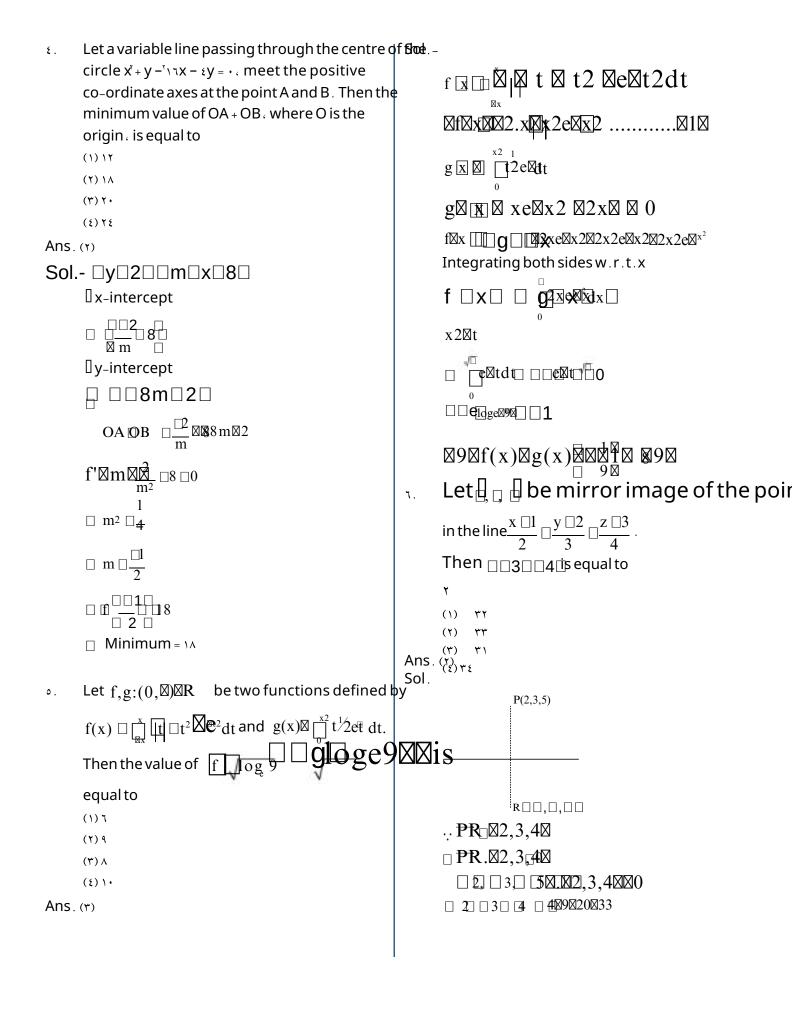
 $z3 \boxtimes z3 \boxtimes 20 \boxtimes 15i$. Then $z4 \boxtimes z4$

equals-

- (1) $\gamma \cdot 3$
- (Y) VO
- (T) 10 15
- (E) YO 3

Ans.(Y)

z**3**\omegaz32\omega20\omega15i

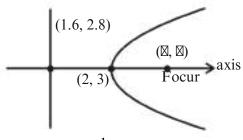

 $z_3 \boxtimes z_3 2 \boxtimes z_1 \boxtimes z_2 \boxtimes z_2 \boxtimes z_1 \boxtimes z_2 \boxtimes z_2 \boxtimes z_1 \boxtimes z_2 \boxtimes z_$

 $\boxtimes 20 \boxtimes 15 i \boxtimes 125 \boxtimes 15 z 1z 2$

- \square 3zz $_2$ \square 25 \square 4 \square 3i
- \square 3zz ₂ \square 21 \square 3i
- \Box $z_1z_2 \supset 7\Box i$

- 2i
- z2 □z**2** 🖾 121 🟚 □44i

- ₁ □z4 □75


v. Let P be a parabola with vertex (7,7) and directrix

 $xx + y = \pi$. Let an ellipse $E: \frac{x^2}{a_2} \square \frac{y^2}{b^2} \boxtimes 1, a \boxtimes b$ of

eccentricity $\frac{1}{\sqrt{2}}$ pass through the focus of the

parabola P. Then the square of the length of the latus rectum of E. is

- (1) $\frac{385}{8}$
- $(r) \frac{347}{8}$
- (r) $\frac{512}{25}$
- (£) Ans. $\frac{656}{25}$
- (٤) Sol.-

Slope of axis $\Box \frac{1}{2}$

 $y \boxtimes 3 \boxtimes \frac{1}{2} \boxtimes x \square 2 \square$

- \Box 2y \Box 6 \Box x
- \square 2y \square x \square
- 2x □y □6□□40
- 4x □2y □12 □ 0

21.6**2**4**2**2.4

MM2.8M6MMM3.2

Ellipse passes through $(\Upsilon , \xi , \Upsilon , \Upsilon)$

$$\Box a^2 \Box 2b2$$

Putin(1) \Box $b^2 \Box \frac{328}{25}$

$$\square \square \frac{2b2}{a} \square \square \frac{4b2}{a2} \square b^2 \square 4 \square \frac{1}{2} \square \frac{328}{25} \square \frac{656}{25}$$

is positive constant. If $T(v_0) = v_0^0 F_0$, then $T(\xi_0)$ is equal to

- (1) Ao F^o
- (۲) 90F^O
- (٣) ٩·F
- (٤) **^**

Ans. (۳)

Sol.-

T			
	đТ	⊠ ⊠(0) d	
Ш	u I		1t
X		<u> </u>	<i>1</i> t
		UT	

 $ln \text{$\mathbb{I}$} \text$

$$\ln \left| \frac{T \boxtimes 80}{80} \right| \boxtimes \boxtimes kt$$

T 🛮 80 🗵 80e 🖺 kt

120 ⊠ 80 ⊠80e⊠k.15

$$\frac{40}{80}$$
 \boxtimes e \boxtimes k 15 $\stackrel{1}{\boxtimes}$

 $\begin{array}{c} \text{MTM45M} \boxtimes 80 \boxtimes 80 \text{eMk.45} \\ \boxtimes 80 \boxtimes 80 \boxtimes \text{eMk.15} \end{array}$

- Let ۲٫۰۰ athd ٤٤، terms of a non-constant A.P. be respectively the the first term of A.P. is ۱ then the sum of first ۲۰ terms is equal to-
 - (1) 4 .
- (٢) ٩٦٠
- (٣) ٩٩٠
- (ξ) **٩**٧٠

Ans. (ξ)

$$(1 + vd) = (1 + d)(1 + \varepsilon d)$$

$$1 + \xi d + 1 + \xi d = 1 + \xi \xi d + \xi d$$

 $7d^7 - 7 \cdot d = \cdot$

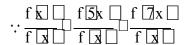
d = 0

=970

- ... Let f: □ $R \boxtimes (0, \boxtimes)$ be strictly increasing
 - function such that $\lim_{x \to 0} \frac{f(7x)}{f(x)} = 1$. Then, the value

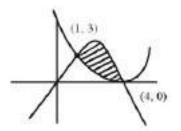
of
$$\lim_{x \to 0} \frac{\mathbb{X}f(5x)}{\mathbb{X}f(x)} = \lim_{x \to 0} \frac{\mathbb{X}f(5x)}{\mathbb{X}f(x)}$$
 is equal to

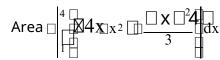
- (1) {
- (٢) •
- (T) V /o
- (٤) ١


Ans.(Y)

Sol.- $f:R\boxtimes(0,\boxtimes)$

.. f is increasing




f □5x□ 1⋈im f 🗴 🗆

⊠1⊠1⊠0

- The area of the region enclosed by the parabola $y = \xi x x$ and $\forall y = (x \xi)$ is equal to
 - $(1) \frac{32}{9}$
 - (٢) ٤
 - (۳) ٦

(٤) $\frac{14}{3}$ Ans. (٣) $\frac{3}{3}$

Area
$$\Box \frac{4x^2}{2} \Box \frac{x^3}{3} \Box \frac{\boxtimes x \boxtimes \textcircled{4}}{9} \Big|_{1}^{4}$$

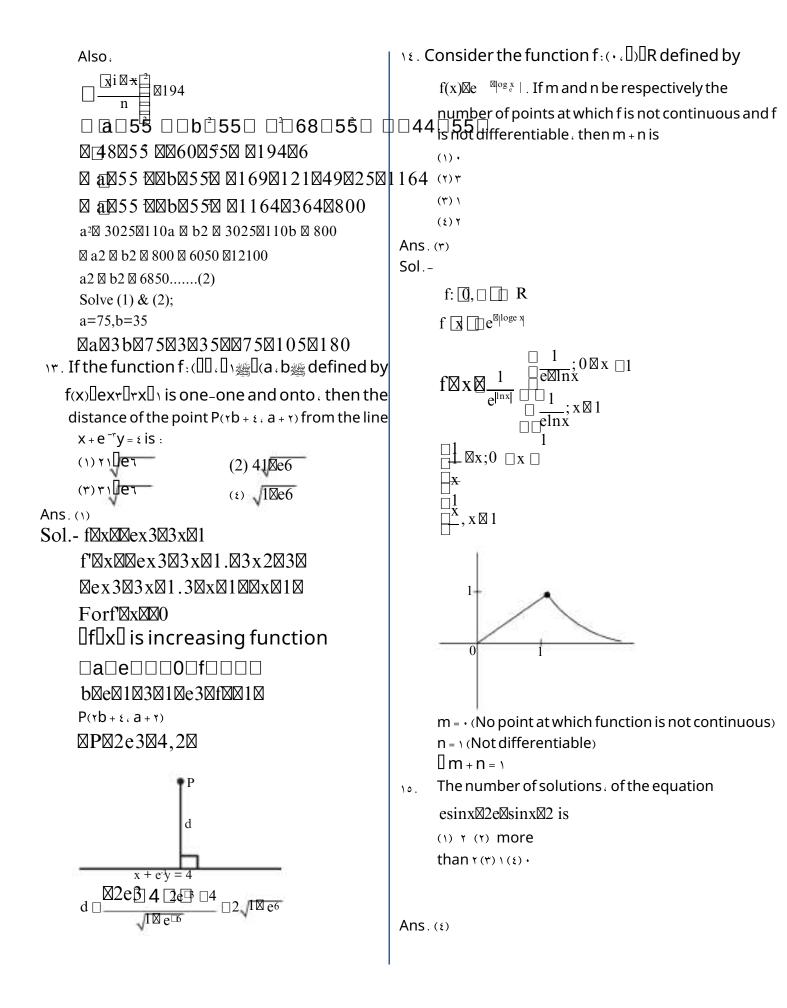
$$\square \bigcirc \frac{64}{2} \square \frac{64}{3} \square \frac{4}{2} \square \frac{1}{3} \square \frac{27}{9} \square$$

 $\boxtimes \boxtimes 27 \boxtimes 21 \boxtimes \boxtimes 6$

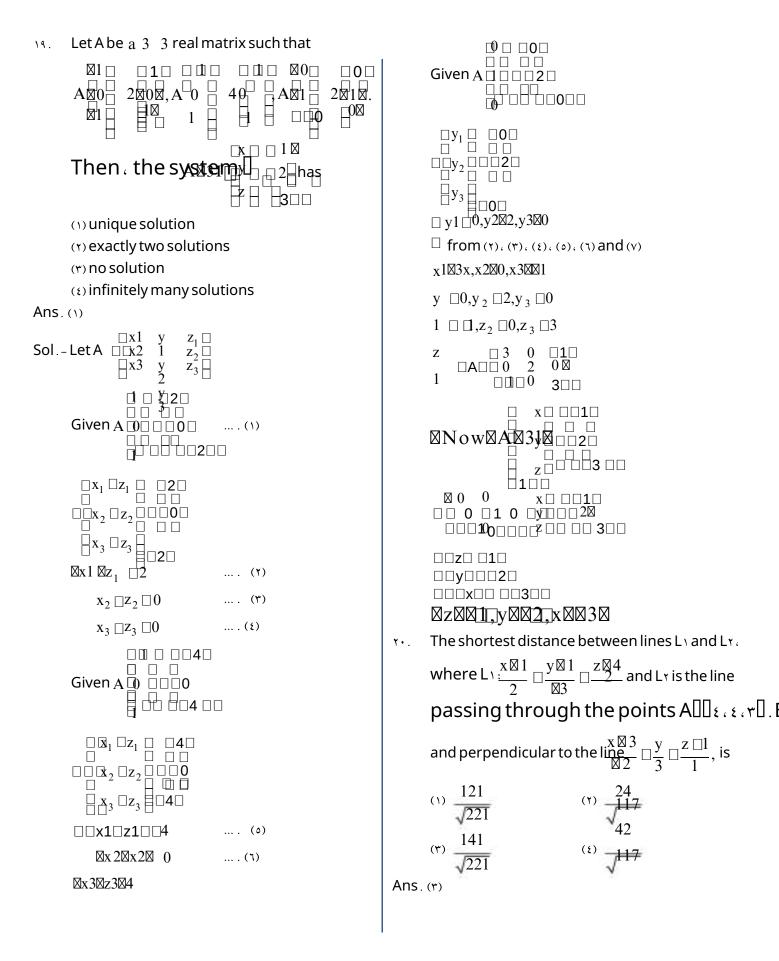
- Let the mean and the variance of ٦ observation a، b، ٦٨، ٤٤، ٤٨، ٦٠ be هه and ١٩٤، respectively if a < b، then a + ٣ b is
 - (1) 7..
 - (٢) 19.
 - (٣) ١٨٠
 - (٤) ٢١٠

Ans. (۳)

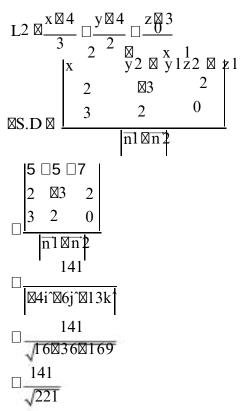
Mean = 00


a∢b

۷ariance = ۱۹٤

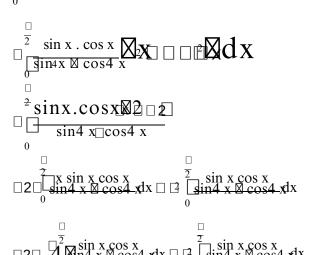

a + rb

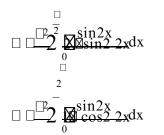
$$\frac{a \Box b \Box 68 \Box 44 \boxtimes 48 \boxtimes 60}{6} \Box$$


- □ 220 a b⊠330
- \Box a \Box b \Box 110.....(1)

Sol	Take esinx □t t □0 □	Sol.	- 6Cm⊠2⊠66⊠16©c _{m⊠2} ⊠8 C3
	$\Box t \Box \frac{2}{t} \Box 2$		$^{7}C_{m1}^{MM}7C$ $_{mM2}$ $M8$ $C3$
	·		⁸ Cm⊠2⊠C3
	$\Box \ \frac{t^2 \boxtimes 2}{t} \ \Box 2$		$\boxtimes m \boxtimes 2$
	⊠t2⊠2t⊠2⊠0		And n⊠l ₃ P:nP4⊠1:8
	<pre></pre>		□n□1□□n□2□□n□3□ n□n□1□□n□2 ⁸ □n□3□
	\[\times t \times 1 \times 3 \]		$ \begin{array}{c c} \hline n \square n \square 1 \square \square n \square 2^{\frac{8}{8}} \square n \square 3 \square \\ \hline $
	∆t⊠1⊠1.73		
	[]t[] י . ייד or – ∙ . ייד (rejected as t < ∙)		$\square P_{m1} \square 1 \square RP \square 9$ 3 C2
	⊠esinx⊠2.73		9⊠8 □8□7□6 <u>异</u>
	⊠logsiæx ⊠loge2.73		= ٣٧٢
	⊠sinx⊠loge2.73⊠1		
	So no solution. If a⊠sin⊠1	\ <u>\</u> \.	A coin is based so that a head is twice as likely to
	—	SM	occur as a tail . If the coin is tossed $\mbox{\tt r}$ times $\mbox{\tt \iota}$ then
	then $\underset{-}{a2\boxtimes b2}$ is equal to		the probability of getting two tails and one head is-
	(1) [] 7] 70		(1) $\frac{2}{9}$
	(2) 8⊠2⊠40⊠⊠50		9
	(3) 4⊠2⊠20⊠50		(r) $\frac{1}{9}$
	(٤) ٢٥		
Ans. Sol.			$(\mathfrak{r}) \; \frac{2}{27}$
	and b\(cos\(\) 1\(cos 5\(\) 2\(\) 2	(٤)	<u>1</u>
	Ma2Mb2 □□5□2□□□□2□□5□	Ans.	27
	⊠8⊠2⊠40⊠⊠50		1
		Sol. I	Let probability of tail is $\frac{1}{3}$
	If for some m , n ℓ $C_{\rm m} \boxtimes 2$ E		\Box Probability of getting head $\frac{2}{3}$
	and ${}^{n\boxtimes 1}P_3$:n $P\boxtimes 1:8$, then ${}^{n}P_{m} \square 1:1 \square m$ is equal to		☐ Probability of getting r tails and r head
	TV7(7)		
	(T) TAE		\Box^2 \Box^3
	(٤)٣٧٢		¹ 27 ¹³
Ans.	(£)		$\Box \frac{2}{27} \Box 3$ $\Box \frac{2}{9}$
	'		9

Sol.-




SECTION-B

Y1. $\frac{120 \operatorname{res} x2 \sin x \cos x}{\operatorname{sin} 4 x \operatorname{res}^4 x} dx \text{ is equal to} \underline{\hspace{1cm}}$

Ans. (10)

$$\mathsf{Sol} = \begin{bmatrix} x 2 \sin x \cdot \cos x \\ \sin 4 x & \cos 4 x dx \end{bmatrix}$$

Let $cos2x \Box t$

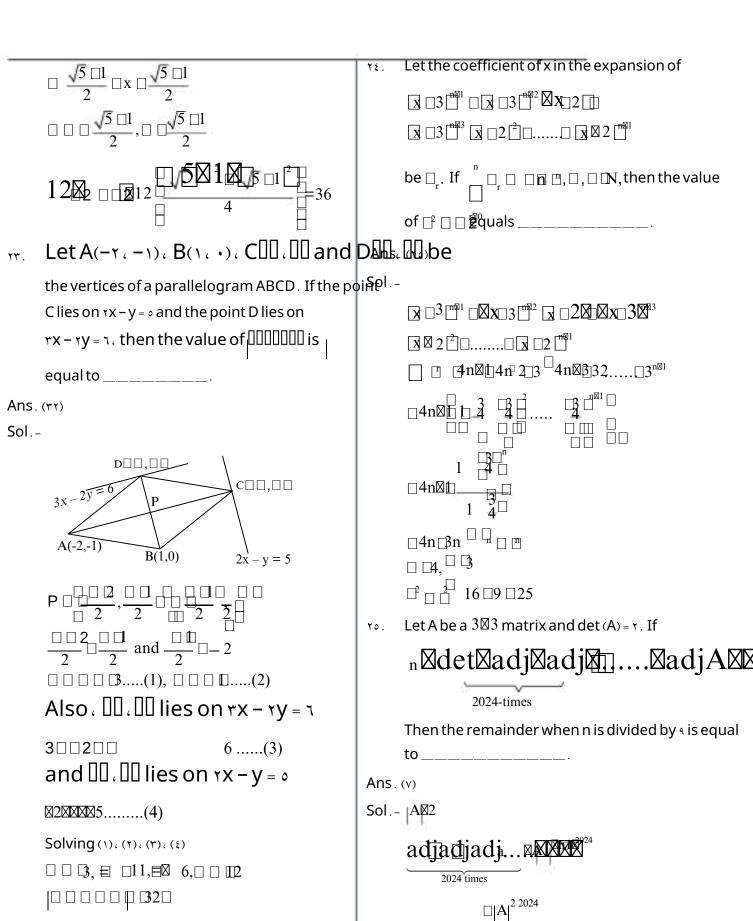
Let a_1 , b_2 c be the length of three sides of a triangle satisfying the condition (a + b)X - Yb(a + c).

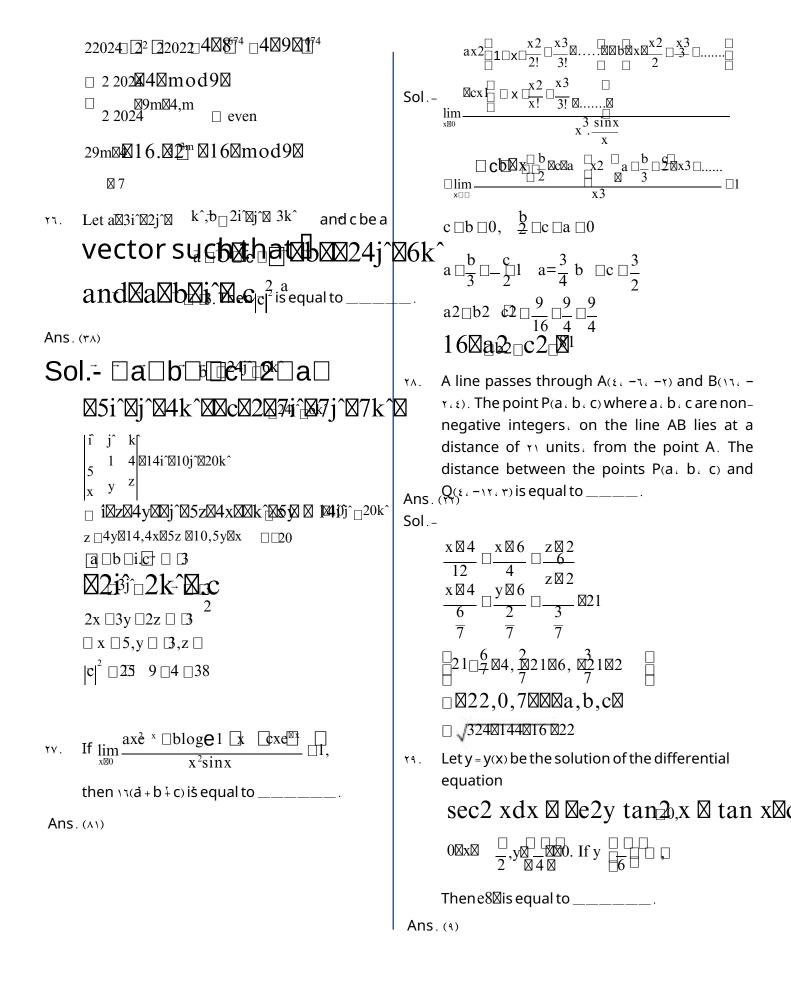
 $x + (b + c) = ^{r}$. If the set of all possible values of

x is the interval 🗓 🗓 🖟 then 🗤

to _____.

Ans. (۳٦)


Sol.- $\triangle a 2 \triangle b 2 \triangle x 2 \triangle b 2 \triangle a \triangle c \triangle x \triangle b 2 \triangle c 2 \triangle 0$


- \Box a2x2 \Box 2abx \Box b2 \Box b2x2 \Box 2bcx \boxtimes c2 \Box 0
- \Box ax \Box b \Box 0, bx \Box c \Box 0
- \Box $a\Box$ $b\Box$ c b+c>a c+a>b

$$\begin{vmatrix} a + ax > bx \\ a + ax > ax^2 \end{vmatrix}$$
 $\begin{vmatrix} ax + bx > a \\ ax + ax^2 > a \end{vmatrix}$ $\begin{vmatrix} ax^2 + a > ax \\ x^2 - x + 1 > 0 \end{vmatrix}$ $\begin{vmatrix} ax + bx > a \\ ax + ax^2 > a \end{vmatrix}$ $\begin{vmatrix} ax + bx > a \\ ax + ax > ax \end{vmatrix}$

$$\frac{1 \boxtimes 5}{2} \square \times \square \frac{1 \boxtimes \sqrt{5}}{2}$$

$$x \boxtimes \frac{\Box 1 \Box \sqrt{5}}{2}$$
, or $x \Box \frac{\Box l \Box \sqrt{5}}{2}$

Sol.-

$$\operatorname{sec} x \frac{\mathrm{d} x}{\mathrm{d} y} \boxtimes \operatorname{e2y} \, \tan 2 \, x \boxtimes \tan \, x \boxtimes 0$$

$$\frac{dt}{dy} \boxtimes e2y \boxtimes t2 \boxtimes t \boxtimes 0$$

$$\frac{\mathrm{d}t}{\mathrm{d}y}\boxtimes t\boxtimes \boxtimes t2.\mathrm{e}2y$$

$$\frac{1}{t2}\frac{dt}{dy}\Box\frac{1}{t}\Box \ \Box \text{e2y}$$

$$\frac{du}{dy} \boxtimes u \boxtimes e2y \\ I.F. \boxtimes \underset{\square}{e} \underset{dy}{\boxtimes} \boxtimes e \boxtimes y$$

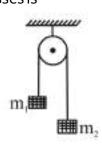
$$\frac{1}{\tan x} \boxtimes e \boxtimes y \boxtimes ey \boxtimes c$$

$$x \boxtimes \frac{\square}{4}, y \boxtimes 0, c \boxtimes 0$$

$$x \boxtimes \frac{1}{4}, y \boxtimes 0, c \boxtimes 0$$
 $x \boxtimes \frac{1}{6}, y = \boxtimes 0$

e8⊠⊠9

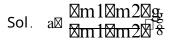
۳۰. Let A = ﴿١، ٢، ٣، ١٠٠﴾ . Let R be a relation
on A defined by $(x, y) \square R$ if and only if $\forall x = \forall y$
Let R_1 be a symmetric relation on A such that
$R\boxtimes R$ \and the number of elements in R\\ is n.
Then، the minimum value of n is
Ans. (เวา)
Sol
$R \boxtimes \boxtimes 3,2$, $6,4$, $9,6$, $12,8\boxtimes$,
n(R)⊠33
⊠66


PHYSICS

SECTION-A

Sol.

n. A light string passing over a smooth light fixed pulley connects two blocks of masses m and m.


If the acceleration of the system is g / λ_i then the ratio of masses is

- (\) **9**
 - 4 (٣)**3**

- $\begin{array}{c} (7) \ \underline{8} \\ 1 \end{array}$
- $(\xi) \frac{5}{3}$

Ans. (1)

8m1\(\times 8m2\times m1\times m2\times m1\times m2\times m1\times m2\times m2\times

7m1⊠9m2

$$\frac{\text{m1}}{\text{m2}} \square \frac{9}{7}$$

A uniform magnetic field of value T acts along positive Y-direction. A rectangular loop of sides S cm and V cm with current of V A is Y-Z plane. The current is in anticlockwise sense with reference to negative X axis. Magnitude and direction of the torque is:

- (1) $2 \square 10 \square 4$ **N** along positive Z –direction
- (2) $2 \square 10 \square 4$ **N** \square **m** along negative Z-direction
- $(r) r \cdot 1 \cdot 1 \cdot 1 \cdot M \cdot m$ along positive X-direction
- ${}^{(4)} \, \emph{2} \square \emph{10} \square \emph{4} \, \emph{N} \square \emph{m}$ along positive Y-direction

Ans. (Y)

 $\overrightarrow{M} \square i \overrightarrow{A}$

- = $0.1 \square i \square$

TEST PAPER WITH SOLUTION

 $=2\square 10\square 4\square\square k^\square N\square m$

The measured value of the length of a simple pendulum is $\tau \cdot$ cm with τ mm accuracy. The time for $\circ \cdot$ oscillations was measured to be $\varepsilon \cdot$ seconds **thicks** $\circ \cdot$ second resolution. From measurements, the accuracy in the measurement of acceleration due to gravity is N%. The value of N is:

(١) ٤

(Y) A

(۳) ٦

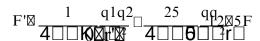
(٤)0

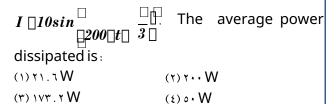
Ans. (۳)

 $T \boxtimes 2 \boxtimes \qquad \begin{cases} \ell \\ g \end{cases}$ $g \square \frac{4 \square^2 \ell}{T^2}$ $\frac{\boxtimes g}{g} \square \frac{\ell}{\ell} \square \frac{2 \square \Gamma}{T}$

 $\Box \frac{0.2}{20} \boxtimes 2 \Box \frac{1}{40} \Box$

 $= \frac{0.3}{20}$


Percentage change $\frac{0.3}{20} \sqcap 100 = 1\%$


- placed in vacuum at 'r' cm apart is F. Force between them when placed in a medium having dielectric K = o at 'r /o' cm apart will be:
 - (1) F/Y0
- (۲) oF
- (٣) F/o
- (٤) ٢0**F**

Ans.(Y)

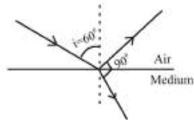
Sol. In air F $\boxed{\frac{1}{4000} \frac{q_1 q_2}{r_2}}$

In medium

Ans. (ξ)

Sol. ⊠P⊠⊠IVcos⊠

$$\square \frac{20}{\sqrt{2}} \square \frac{10}{\sqrt{2}} \boxtimes \cos 60o$$


γ٦. ⊠50W

When unpolarized light is incident at an angle of 1.° on a transparent medium from air. The reflected ray is completely polarized. The angle of refraction in the medium is

- (1) ***
- (٢) ٦٠٠
- (٣) ٩٠٠
- (٤) ٤٥٠

Ans.(1)

Sol. By Brewster's law

At complete reflection refracted ray and reflected ray are perpendicular. (1)

- The speed of sound in oxygen at S.T.P. will be approximately:
 - (Given, $R \square 8.3JK \square 1, \square \square 1.4$)
 - (1) 310m/s
 - (Y) TTT m /S
 - (٣) ٣٤ 1 m /s
 - (٤) ٣٢0 m/S

Ans.(1)

Sol.
$$v \boxtimes \sqrt{\frac{MRT}{M}} \Box \sqrt{\frac{1.4 \boxtimes 8.3 \boxtimes 273}{32 \boxtimes 10 \boxtimes 3}}$$

 $\boxtimes 314.8541 \sim 315 \text{m/s}$

- A gas mixture consists of ۸ moles of argon and ٦ moles of oxygen at temperature T . Neglecting all vibrational modes ، the total internal energy of the system is
 - (1) Y9 RT
 - (۲) ۲ · RT
 - (٣) YV RT
 - (٤) ٢1 RT

Ans. (۳)

Sol. U\(\text{U}\text{nCVT}\)


$$\square$$
 U \square n1CV T \square n 2C \bigvee_2 T

$$\square 8 \square \frac{3R}{2} \square T \square 6 \square \frac{5R}{2} \boxtimes T$$
= YVRT

The resistance per centimeter of a meter bridge wire is r_i with $X\square$ resistance in left gap. Balancing length from left end is at ϵ_i cm with r_i \square resistance in right gap. Now the wire is replaced by another wire of r resistance per centimeter. The new balancing length for same settings will be at

- (1) **T · CM**
- (Y) 1 · cm
- (٣) **A · cm**
- (ξ) ξ · cm

$$\frac{25}{r_{\ell_1}} \Box \frac{X}{r_{\ell_2} X}$$

$$\frac{25}{2r'_{l_1}} \square \frac{2r'_{l_2}}{2r'_{l_3}}$$

. . . . (ii)

From (i) and (ii)

Given below are two statements: ٤٠.

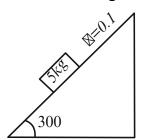
Statement I: Electromagnetic waves carry as they travel through space and this energy is egually shared by the electric and magnetic Statement II: When electromagnetic waves strike auriace a pressure is exerted on the Ans. (In the light of the above statements, choose

most appropriate answer from the options given below: (١) Statement I is incorrect but Statement II is correct (٢) Both Statement I and Statement II are correct. (٣) Both Statement 1 and Statement II are incorrect.

Ans. (%) Statement I is correct but Statement II is $\ddot{\mathsf{i}}$ ρcorrect $_{\mathbf{B2}}$

 $\frac{1}{2}$ \square $\frac{1}{2}$ \square $\frac{1}{2}$ \square $\frac{1}{2}$ \square $\frac{1}{2}$

 \therefore E\(\text{E}\(\text{BandC} \) \(\text{\frac{1}{\text{ROMO}}} \) ٤١.

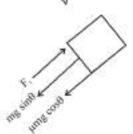

> In a photoelectric effect experiment a light of frequency \.o times the threshold frequency is made to fall on the surface of photosensitive material. Now if the frequency is halved and intensity is doubled ، the number of photo ele¢trons emitted will be:

- (1) Doubled
- (Y) Quadrupled
- (٣) Zero
- (E) Halved

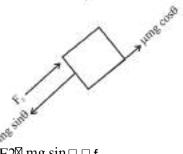
Ans. (۳)

Sol. Since $\frac{f}{2} \boxtimes f$ i.e. the incident frequency is less than threshold frequency. Hence there will be no emission of photoelectrons. ⊠ current ⊠ 0

A block of mass o kg is placed on a rough inclined surface as shown in the figure.


If **F** is the force required to just move the block up the inclined plane and ${\it F}$ is the force required to just prevent the block from sliding down, then the value of $\mathbf{F}_{I}^{\mathbf{I}}\mathbf{F}$ is $\frac{1}{2}$ Use $g \square 10m/s2$

- (1) YOTN


- (٤) \ · N

BONUS Sol. fK⊠mgcos⊠

⊠2.53N

F1\mgsin\mgK

 $F2 \boxtimes mg \sin \square \square f_{*}$

$$\square 25 \square 2.5 \sqrt{3}$$

□ F1□F2⊠53N

	(1) £7% (1)	Y) Y7%	
	(٣) ٣٦%.	٤) ٥٦٪	
Ans.	(٣)		
Sol.	P⊠i2R		
	$P_{int} \ \Box I^2_{int} R$		٤٦.
	Pfinal⊠0.8Iint⊠R		۷۱.
	% change in power =		
	$rac{P_{\mathit{final}} \Box P_{\mathit{int}}}{P_{\mathit{int}}} \Box 100 \Box (0.64 \Box 1)$)□100□□36%	
٤٤.	If two vectors A and B ha	aving equal magnitude	
	R are inclined at an ang	gle🛚، then	An
	$())A B ^{-1} \qquad \boxed{5} Poin = \boxed{5}$		/
	$(1) A B \Box - \sqrt{2} R \sin \Box$		Sol.
	$(Y) \overline{A} \sqcap \overline{B} \square 2 \mathbf{P}_{oin} \square \square$		301.
		L	
	(Y) $ A \cap B $ $ B$		
(٤)	$ A \square B \square 2Rcos \square $		
Ans.	(٣)	I	637
Sol.	The magnitude of	resultant vector	٤٧.
	$R' \square \sqrt{a^2 \square b^2 \square 2ab \cos \square}$		
	Here a□ ^b □R		
	Then R' $\square \sqrt{R2 \square R^2 \square 2R}$	2 cos⊠	
	$\Box^{R}\sqrt{2}\sqrt{1}\Box^{cos}\Box$		
	$\Box \sqrt{2}R 2\cos 2 2$		Ans Sol.
	$\boxtimes 2R\cos\frac{\square}{2}$		
٤٥.		aloua bouina rodiua oa	
	The mass number of nu half of the radius of nuc		
	is:		
	(1) Y {	7)	
	(٣) ٤.	٤) ٢٠	

By what percentage will the illumination of the

lamp decrease if the current drops by <-/s

٤٣.

Ans.(1)

Sol.
$$R_1 \square \frac{R_2}{2}$$
 $0 \square$
 $R A_1 \square^{t/3} \square \frac{R_0}{2} \square 2 \square^{t/3}$
 $A_1 \square 8 A_2$
 $A \square \frac{192}{8} \square 24$

The mass of the moon is 1/188 times the mass of a planet and its diameter 1/11 times the diameter of a planet. If the escape velocity on the planet is v. the escape velocity on the moon will be:

$$\begin{array}{c} (1) \frac{v}{3} \\ (7) \frac{v}{4} \\ (5) \frac{v}{12} \end{array}$$

Sol.
$$V_{escape} \Box \sqrt{\frac{2GM}{R}}$$

$$V_{planet} \Box \sqrt{\frac{2GM}{R}} \Box V$$

$$V_{Moon} \Box \sqrt{\frac{2GM \Box 16}{144R}} \Box \frac{1}{3} \sqrt{\frac{2GM}{R}}$$

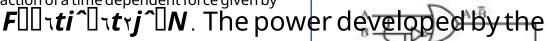
$$V_{Moon} \Box \frac{V_{Planet}}{3} = \frac{V}{3}$$

A small spherical ball of radius r, falling through a viscous medium of negligible density has terminal velocity 'v'. Another ball of the same mass but of radius 2r, falling through the same winthus mediumal velocity:

$$\begin{array}{ccc} \text{(1)} & \frac{v}{2} & \text{(2)} & \frac{v}{4} \\ \text{(2)} & \text{(2)} & \text{(2)} & \text{(3)} \end{array}$$

Ans. (1)

 $Mg \sqcap 6 \sqcap \sqcap rv$


Sol. Since density is negligible hence Buoyancy force will be negligible At terminal velocity.

$$V \square_{F}^{1}$$
 (as mass is constant)

Now, $\frac{v}{v'} \square_{F}^{r'}$
 $r'\square 2r$

So, $v'\square_{F}^{v}$

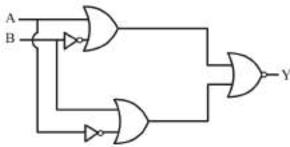
- A body of mass r kg begins to move under the Sol
 - action of a time dependent force given by

 $force\,at\,the\,time\,t\,is\,given\,by\colon$

- $(1) \sqcap 6t4 \sqcap 9t5 \sqcap W$
- $(2) \square 3t3 \square 6t5 \square W$
- $(3) \square 9t5 \square 6t3 \square W$
- (4) | 9t3 | 6t5 | W

Ans. (ξ)

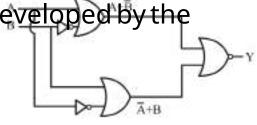
Sol. $F \square Gti \cap Gt2j \cap N$


 $F \square ma \square \square 6fi \square 6t2$

 $a \square_{m}^{F} \square \square 3ti \square 3t2j \square$

$$v \prod_{t=0}^{t} adt \frac{3t2}{2} i \hat{\ \ } t^{3j} \hat{\ \ }$$

 $P \square F.v \square \square 9t 6t5 \square W$


٤٩.

The output of the given circuit diagram is

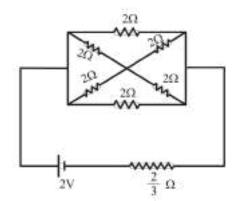
0	0	0
1	0	0
0	1	0
1	1	1
	0 1 0 1	0 0 1 0 0 1 1 1

Ans. (۳)

- Consider two physical quantities A and B related to each other as $\mathbf{E} \square \frac{B \square x 2}{At}$ where E , x and t have dimensions of energy, length and time respectively. The dimension of AB is
 - (1) $L \square 2M1T0$
 - (2) $L2M\Box 1T1$
 - $(3) L \square 2M \square 1T1$
 - (4) $L0M\square 1T1$

Ans.(Y)

Sol. MBMML2


$$X^2 \boxtimes \square \square L2 \square \square 1$$

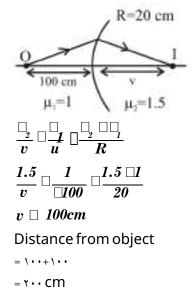
tE TML2T $\boxtimes 2$ MT $\boxtimes 1$

 $\square A \square \square M \square 1 T$

 $\square AB\square\square\square L2M\square1T1\square$

SECTION-B

V and an internal resistance $\frac{2}{3}$ f . The power consumption in the entire circuit is ______ WAr

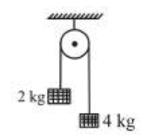


Ans. (۳)

Sol.
$$R_{eq} \; \Box rac{4}{3} \; \Box$$
 $\Box P \; \Box rac{V^2}{R_{eq}} \; \Box rac{4}{4/3} \; \Box \, 3 \, W$

Light from a point source in air falls on a convex curved surface of radius $\tau \cdot$ cm and refractive index $\iota \cdot \circ$. If the source is located at $\iota \cdot \circ$ cm from the convex surface, the image will be formed at cm from the object.

Ans. (۲۰۰) Sol.



The magnetic flux \square (in weber) linked with a closed circuit of resistance $\wedge \Omega$ varies with time (in

seconds) as $\square \square \circ t \times \square \times \tau t \square \times 1$. The induced current Wans. (in the circuit at t = xs is ______A.

$$i\boxtimes \frac{\square}{\mathbf{R}}\square_{\mathbf{8}}^{\mathbf{16}}\boxtimes 2\mathbf{A}$$

2.0 \square 1011N/m2. The longitudinal strain developed in the wire is $\frac{1}{\square \square}$.

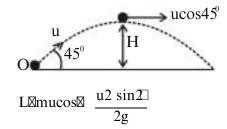
Ans. (11)

Sol.
$$T \square \square 2mm \square_2 \square g = \frac{80}{3}N$$

$$A \square r2 \square 16 \square 10 \square 10m2$$

$$Strain = \frac{\square \ell}{\ell} \square \frac{F}{AY} \square \frac{T}{AY}$$

$$= \frac{80/3}{16 \square 10 \square 10 \square 2 \square 1011} \square \frac{1}{12 \square}$$

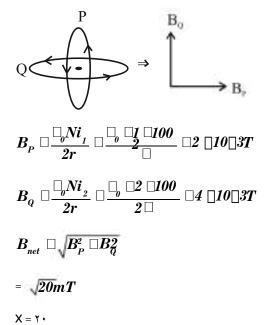

هه. ∐∐*12*

A body of mass 'm' is projected with a speed 'u' making an angle of & with the ground. The angular momentum of the body about the point of projection at the highest point is expressed as

$$\frac{\sqrt{2mu^3}}{Xg}$$
 . The value of 'X' is______.

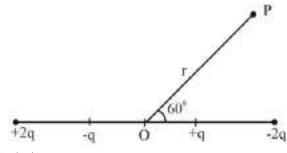
Ans. (A)

Sol.

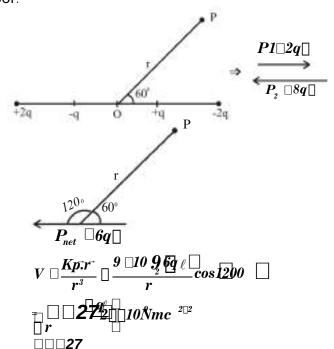

$$\boxtimes mu3 \frac{1}{4\sqrt{2} g} \boxtimes x \boxtimes 8$$

Two circular coils P and Q of we turns each have same radius of cm. The currents in P and R are v A and v A respectively. P and Q are placed with their planes mutually perpendicular with their centers coincide. The resultant magnetic field induction at the center of the coils is xmT.

where x =_____.

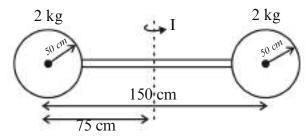

$$[\mathrm{Use} \square 4 \square 10 \square 7TmA \square 1]$$
 Ans. (γ .)

Sol.



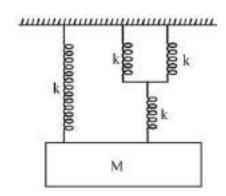
ov. The distance between charges +q and -q is +1 and between +r q and -r q is +1. The electrostatic potential at point P at a distance r from centre O is

Ans. (YV) Sol.



Two identical spheres each of mass rkg and radius rcm are fixed at the ends of a light rod so that the separation between the centers is rectm. Then moment of inertia of the system about an axis perpendicular to the rod and passing through its

middle point is $\frac{x}{20}$ kgm where the value of x is


Ans. (۵۳)

Sol.

 $\label{eq:continuous} {}_{\text{o.s.}} \quad \text{The time period of simple harmonic motion of}$

mass M in the given figure is 10M, where the value of 10 is 100 in 100 is 100 is

Ans. (۱۲)

Sol.
$$k_{eq} \square \frac{2k \cdot k}{3k} \square k \square \frac{5k}{3}$$

Angular frequency of oscillation [

Period of oscillation $\mathbb{I}_2 \cup 3^{m}_{5k}$

$$\Box \Box \sqrt{\frac{12m}{5k}}$$

A nucleus has mass number \mathbf{A} and volume \mathbf{V} .

Another nucleus has mass number \mathbf{A} and volume $\mathbf{V}_{\underline{i}}$. If relation between mass number \underline{i} is $\mathbf{A} = \mathbf{A}_{\underline{i}}$.

then
$$rac{V_{ extsf{r}}}{V_{ extsf{r}}}$$

Ans. (٤)

Sol. For a nucleus

$$\Box \quad \frac{V_2}{V_1} \, \Box_{\mathbf{A}^{\frac{3}{2}}}^{\mathbf{A}_2} \, \Box_{\mathbf{4}}$$

CHEMISTRY **TEST PAPER WITH SOLUTION** SECTION-A Asachipile CODE ave Ughed Y.Y.g is ignited to constant weight of \. \org. The Match List I with List II composition of mixture is: (Given molar mass in g mol []\ LIST-I LIST - II CaCO3:100,MgCO3:84) (Complex ion) (Electronic Configuration (1)1.187gCaCO3\(\text{D}\)1.023gMgCO3 GM 20M ^{3™} I. (Y)1.023gCaCO3⊠1.023gMgCO3 (♥)1.187gCaCO3\(\text{\square}\)1.187gMgCO3 (٤)1.023gCaCO3\(\text{D1}.187gMgCO3\) $Fe \boxtimes H2 \bigcirc \boxtimes ^{II}. \quad t_{2g}^{3} e^{0g}$ Ans. (1) Sol:- CaCQ\$\text{\$\text{Sol}}\text{\$\text{CaQ\text{\$\ext{\$\ext{\$\text{\$\text{\$\exitit{\$\ext{\$\exititt{\$\ext{\$\exitit{\$\exititt{\$\exit{\$\exit{\$\exititt{\$\exititt{\$\exit{\$\exitit{\$\exit{\$\exit{\$\exititt{\$\exitit{\$\exitit{\$\exitit{\$\exititt{\$\exitit{\$\exitit{\$ C. $Ni \times H_{2g}^{3} = 2g$ MgCO3Let the weight of CaCObe x gm ☑ weight of MgCO3☒2.21☒x☒gm Moles of CaCO decomposed = moles of CaO Choose the correct answer from the options formed given below: x moles of CaO formed (1) A-III, B-II, C-IV, D-I (Y) A-IV, B-I, C-II, D-III \blacksquare weight of CaO formed \blacksquare_{356} (٣) A-IV, B-III, C-I, D-II (٤) A-II, B-III, C-IV, D-I Moles of MqC@decomposed = moles of MgO formed Ans. (ξ) $\square^{2.21\,\square\,x\,\square}$ moles of MgO formed Sol:- CrH2O Contains Cr3\ Ar 3 d3:t3 \square weight of MgO forme $\mathbb{Q}^{2,21 \boxtimes x}_{_{\mathcal{A}}}$ $\square \quad \frac{2.21 \boxtimes x}{84} \square 40 \square \frac{x}{100} \boxtimes 56 \square 1.152$

 $\Box V \coprod 2O \Box_0^{\Box^2} \Box$ Contains $V^3\Box$: Ar $\Box d^2 : t_{2g}^2 = cog$

□ x □ 1.1886 g 🛭 weight of CaCO3

& weight of MgCO3\(\times\)1.0214g

Tr. Identify A and B in the following reaction sequences: -

τε. Given below are two statements :

Statement I: **\$** solid undergoes disproportionation reaction under alkaline conditions to form $1000 \, \text{km} \, \text{landS} \, \text{20} \, \text{s}^{30}$

Statement II : *CIO* Can undergo

disproportionation reaction under acidic condition . In the light of the above statements , choose the most appropriate answer from the options given below :

(ii) HCl

- (1) Statement I is correct but statement II is incorrect.
- (Y) Statement I is incorrect but statement II is correct
- (٣) Both statement I and statement II are incorrect
- (¿) Both statement I and statement II are correct

Ans.(1)

 S_1 : $S \boxtimes 12 OH \boxtimes 4S2 \boxtimes 2S O_2^2 \boxtimes_3 \boxtimes 6H2O$

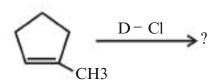
မြန်ခုံ မြန်ခုံ ti**carratic**t nundergo

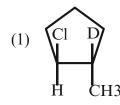
reaction as chlorine is present in it's highest oxidation state

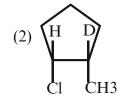
Identify major product 'P' formed in the following reaction .

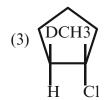
$$(1) \qquad (Major Product)$$

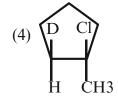
$$(1) \qquad (Major Product)$$


$$(2) \qquad (COCH 3)$$


$$(3) \qquad (Major Product)$$


$$(4) \qquad (4) \qquad$$


Ans. (ξ)


11. Major product of the following reaction is –

ıv. Identify structure of ۲،۳-dibromo-۱-phenylpentane .

Ans. (۳)

Sol:-

$$\begin{array}{c}
Br \\
& \\
& \\
Br
\end{array}$$

2, 3-dibromo -1-phenylpentane

τλ. Select the option with correct property –

(1) NiNCOMAnd Ni 60th diamagnetic

(3) NICCOMANDANICIM

4ॏ diamagnetic، Nj∏CO∐

paramagnetic

(1) Ni CO diamagnetia NiCl paramagnetic

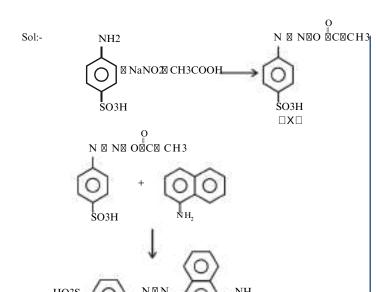
Ans. (٤)

٦٩.

Sol:- Nito diamagnetic, spr hybridisati

Nic P. □ paramagnetic. spr hybridisar number of unpaired electrons = r

The azo-dye (Y) formed in the following reactions is Sulphanilicacid ☐ NaN ② CH3COOH X


$$X + \bigcap_{NH2} \longrightarrow Y$$

$$1. \qquad N = N \qquad O \qquad N = N \qquad SO3H$$

2. S
$$N = 0$$
 $NH2$

4.
$$HSO3 \longrightarrow N = N \longrightarrow NH2$$

Ans. (ξ)

This is known as Griess-Ilosvay test.

Given below are two statements:

[Y]Red azo-dye

Statement I: Aniline reacts with con. H 2SO4 followed by heating at £04-£44 K gives paminobenzene sulphonic acid, which gives blood red colour in the 'Lassaigne's test'.

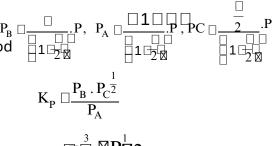
Statement II: In Friedel - Craft's alkylation and acylation reactions aniline forms salt with the AlCl و catalyst . Due to this ، nitrogen of aniline aguires a positive charge and acts as deactivating group.

In the light of the above statements, choose the correct answer from the options given below:

- v. Statement I is false but statement II is true
- r. Both statement I and statement II are false
- ♥. Statement I is true but statement II is false
- ٤. Both statement I and statement II are true

 $A_{\square g} \xrightarrow{\longrightarrow} B_{\square g} \square \stackrel{\longleftarrow}{\longrightarrow}_{2 \square g} \square$ The correct relationship between $KP \square$ and equilibrium pressure P is

(1) KP
$$\boxtimes \frac{\Box^{1/2} P^{1/2}}{\boxtimes 2\Box \Box^{1/2}}$$


$$\text{(Y)} \quad \mathbf{K_{P}} \; \Box \frac{\Box^{3}\!\!\!/ \; \mathbf{P}^{1}\!\!\!/\!\!\!/}{\boxed{2} \; \Box \; \Box^{2}\!\!\!/ \; 2 \; \boxed{\square} \; \Box} \; \Box$$

(r)
$$KP \boxtimes \frac{\boxtimes \frac{1}{2} Y P^{\frac{3}{2}}}{\square 2 \square 2}$$

(1) KP
$$\boxtimes \frac{\boxtimes 2'P^{\frac{1}{2}}}{\square 2 \square^{\frac{3}{2}}}$$

Ans. (Y)

Sol:-
$$A_{\square g} = \begin{bmatrix} C \\ C \\ C \end{bmatrix} = \begin{bmatrix} C \\ C \\ C \end{bmatrix}$$
$$t = t_{q} \quad \boxed{1} \quad \boxed{1} \quad \boxed{1} \quad \boxed{2} \quad \boxed{2}$$

Choose the correct statements from the following A. All group 17 elements form oxides of general formula EO and EO where E = S . Se . Te and Po. Both the types of oxides are acidic in nature.

- B. TeO r is an oxidising agent while SOr is reducing in nature.
- C. The reducing property decreases from the HyTe down the group.
- D. The ozone molecule contains five lone pairs of electrons.

Choose the correct answer from the options given below:

- \. A and D only
- Y. Band Conly
- ۳. Cand Donly
- ٤. A and B only

Ans. (ξ)

٧٢.

Ans. (ξ)

- Sol:-(A) All group \7 elements form oxides of the EO2andEO3 type where E⊠S,Se,TeorPo.
 - (B) SO γ is reducing while TeO γ is an oxidising agent.
 - (C) The reducing property increases from to HyTedown the group.

vr. Identify the name reaction.

- (1) Stephen reaction
- (Y) Etard reaction
- (٣) Gatterman-koch reaction
- (E) Rosenmund reduction

Ans. (۳)

Sol:-

Gatterman-Koch reaction

- vs. Which of the following is least ionic ?
 - (1) BaCl₂
- (Y) AgCl
- (٣) **KCI**
- (4) CoC½

Ans. (Y)

Sol:- AgCI\(\text{DCoCl}\) \(\text{0}\) BaCl\(\text{0}\) (ionic character)

Reason : Ag has pseudo inert gas configuration.

- The fragrance of flowers is due to the presence of some steam volatile organic compounds called essential oils. These are generally insoluble in water at room temperature but are miscible with water vapour in vapour phase. A suitable method for the extraction of these oils from the flowers is
 - 1. crystallisation
 - Y. distillation under reduced pressure
 - ۳. distillation
 - ٤. steam distillation

Ans. (ξ)

Sol: - Steam distillation technique is applied to separate substances which are steam volatile and are immiscible with water.

Given below are two statements:

Statement I: Group \r trivalent halides get easily hydrolyzed by water due to their covalent nature.

Statement II : AICH upon hydrolysis in acidified aqueous solution forms octabed [AII] ion .

In the light of the above statements, choose the correct answer from the options given below:

- v. Statement I is true but statement II is false
- r. Statement I is false but statement II is true
- ۳. Both statement I and statement II are false
- ٤. Both statement I and statement II are true

Ans. (ξ)

Sol: – In trivalent state most of the compounds being covalent are hydrolysed in water. Trichlorides on

hydrolysis in water form tetrahed MDH species, the hybridisation state of element M is sp3.

In case of aluminium, acidified aqueous solution forms octahedral of the ion.

. The four quantum numbers for the electron in the outer most orbital of potassium (atomic no. 14) are

(r)
$$n = 3$$
, $1 = \cdot$, $m = 1$, $s = \frac{1}{2}$

$$(\xi) \, \mathsf{n} \, \mathsf{D} \, \mathsf{r} \, \iota = \{ \mathsf{n} \, \mathsf{m} \, \mathsf{D} \, \mathsf{r} \, \iota \, \mathsf{s} \, \mathsf{D} \, \mathsf{d}$$

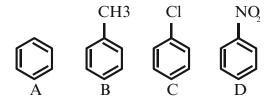
Ans.(Y)

Sol: - 19K 1s,2 s2,2p6,3s2,3p6,4s1.

Outermost orbital of potassium is ¿s orbital

$$n\boxtimes 4, l\boxtimes 0, ml\boxtimes 0, s\boxtimes \boxtimes \qquad \frac{1}{2}$$

- Choose the correct statements from the following I:- OCH r shows OMand I. ٧٨.
 - A. MnyOv is an oil at room temperature
 - B. VYO : reacts with acid to give Ver
 - C. CrO is a basic oxide
 - D. VrOo does not react with acid


Choose the correct answer from the options given below:

- ۱. A، B and D only
- τ. A and C only
- ۳. A، B and Conly
- ٤. B and C only

Ans. (Y)

 $Sol_{:-}(A)Mn \ \ \, \forall Ov \ \ \, is \ \ \, green \ \ \, oil \ \ \, at \ \ \, room \ \ \, temperature .$

- (B) VyO₂ dissolve in acids to give VO salts.
- (C) CrO is basic oxide
- (D) V YO₀ is amphoteric it reacts with acid as well as base.
- The correct order of reactivity in electrophilic substitution reaction of the following compoundins. (7) is:

- $A \cup B \boxtimes C \boxtimes A \boxtimes D$
- Y. D\OC\B\A
- $_{\mathsf{T}}$. $A \boxtimes B \boxtimes C \boxtimes D$
- , B\BA\C\D

Ans.(٤)

[]Cl shows[]Mand[]Ibut inductive effect dominates.

□NOr shows □Mand□I. Electrophilic substitution []

⊠M and **⊠** I

XXMandXI

Hence, order is B[]A[]C[]D.

Consider the following elements.

Group
$$A'B' \rightarrow Period$$
 $C'D'$

Which of the following is /are true about A',B',C'andD'?

- A. Order of atomic radii: B'\[A'\]D'\[C'
- B. Order of metallic character : B'\[A'\[D'\[C'\]
- C. Size of the element : D'\[C'\]B'\[A'
- D. Order of ionic radii : B'DDA'DD'DD'DC'D

Choose the correct answer from the options given below :

- 1. A only
- ۲. A، B and D only
- ۳. A and B only
- ٤. B، C and D only

Sol: - In general along the period from left to right δ size decreases and metallic character decrease.

> In general down the group, size increases and metallic character increases

B'\(\Pa\)A'\(\Pa\)size\(\Pa\)'\(\Pa\)size\(\Pa\)

D'\(\Pi\)C'\(\Pi\)size\(\Pi\)'\(\Pi\)Size\(\Pi\)

B'\\ A'\\ metalliccharacter\\

D'\(\text{\mathbb{Q}}\)C'\(\text{\mathbb{M}metalliccharacter}\(\text{\mathbb{Q}}\)

B'MA'MsizeM

D'MMC'MMsizeM

C statement is incorrect.

	SECTION-B	۸٤.	Number of isomeric products formed by mono- chlorination of Y-methylbutane in presence of
۸١.	A diatomic molecule has a dipole moment of		sunlight is
	v. Y D. If the bond distance is \A, then fractiona charge on each atom is \(\text{\tint{\text{\tin}\text{\texi{\text{\texi}\tex{\text{\text{\text{\text{\text{\text{\text{\texi\tiint{\text{\te	l Ans.	
	(GIVEIT IDE IT ET MESA CITI)	Sol:-	C12/h⊠ + C1
Ans.	(•)		ČI 🗆 🗀 CI
Sol:-	00 v. vD0q0d		* + \
	☑ 1.2☑10☑10esuÅ☑q☑1Å		C1 □□
	⊠q⊠1.2⊠10⊠10esu		_
۸۲.	r[]k[]A[] for a reaction ، ه ۰ ٪ of A is de	com	ወወፍ କ ብber of isomeric products = ٦
	in ۱۲۰ minutes . The time taken for ۹۰% decomposition of A is minutes .	۸٥.	Number of moles of H ions required by 1 mole
Ans.	(٣٩٩)		of MnO ₽to oxidise oxalate ion to G @
Sol:	- r0k0A0	Ans.	(A)
	So، order of reaction = ۱	Sol:-	
t1/2⊠120min	t1/2⊠120min		$2MnQ_4^{\Box}\Box 5C_2O_4^{\Box}\Box 16H^{\Box}\Box\Box\Box 2Mn2\Box\Box 10CO_2\Box 8H2O$ \Box Number of moles of H \Box ions required by \lor
	For ٩٠٪ completion of reaction		mole of MnO₁ to oxidise oxalate ion to €® ∧
	$\square \ k\square \ \frac{2.303}{t} \log \frac{\square}{\square} \frac{a}{\square}$	۸٦.	In the reaction of potassium dichromate, potassium
	$ \frac{0.693}{t_{1/2}} \frac{2.303}{t} \log \frac{100}{10} $		chloride and sulfuric acid (conc.), the oxidation state of the chromium in the product is
	⊠t⊠399min.	Ans.	(٦)
۸۳.	A compound (x) with molar mass \(\cdot \text{Agmol} \Bigsiles \) undergoes acetylation to give product with n mass \(\cdot \text{Ygmol} \Bigsiles \). The number of amino grouthe compound (x) is	Sol:	- K2Cr2O7\\S\X\4KC\\S\X\6H2SO4\\conc.\X\\X\2CrO2C\12\X\g\X\6KHSO4 + 3H2O\\X\X\10 This reaction is called chromyl chloride test.
Ans.	(٢)		Here oxidation state of Cr is +٦.
	O O II		
Sol:-		۸٧.	The molarity of \L orthophosphoric acid
	Gain in molecular weight after acylation with or NHt group is ¿t .	one	having vv/, purity by weight (specific gravity v. o & gcm 🖙) isM .
	Total increase in molecular weight = A&		(Molar mass of PPO 1998 gmol 121)
	Number of amino group in \$\frac{\x}{42} \Bigs_{\gamma}	Ans.	(11)

Sol: – Specific gravity (density) = 1.05 g/cc. FrBm Bhe wita DhinEsaAndBK Volume ⊠1L⊠1000ml the number vitamins that can be stored in our body ⊠1540g Ans.(0) purity of H YSO € is Y Y // So weight of BPO4\(\tilde{Q}\)0.7\(\tilde{Q}\)1540\(\tilde{Q}\)1078g Sol: - Vitamins A, D, E, K and B, y are stored in liver and adipose tissue. Mole of H3PO4 $\boxtimes \frac{1078}{98} = 11$ If o moles of an ideal gas expands from 1. L to a volume of w. Latr. Kunder isothermal and Molarity $\frac{11}{1L} \boxtimes 11$ reversible condition then work, w, is \(\text{lx} \) . Th ۸۸. value of x is ____ The values of conductivity of some materials at (Given R⊠8.314JK⊠1mol⊠1) $1.0 \boxtimes 10 \boxtimes 16, 1.2 \boxtimes 10, 3.91, 1.5 \boxtimes 10 \boxtimes 2,$ Ans. (YAVY)) among the materials is _____ Sol: – It is isothermal reversible expansion , so work done Ans. (ξ) negative Sol:- $W \square \square 2.303 nRT log \square V \square \square$ Conductivity □Sm-1⊠ 2.1 \(\times 103 \times \)
1.2\(\times 10 \times \)
2.1 \(\times 103 \times \)
2.1 \(\times 103 \times \)
3.1 \(\times 103 \times \)
3.2 \(\times 103 \times \)
3.3 \(\times 103 \times \)
3.3 \(\times 103 \times \)
3.4 \(\times 103 \times \)
3.5 \(\times 103 \times \)
3.7 1X103 XX \square \square 2.303 \boxtimes 5 \boxtimes 8.314 \boxtimes 300 $100 \square$ 1⊠10⊠16 Insulatorat298.15K

Therefore number of conductors is ε .

□ **□**28721J