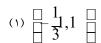
FINAL JEE-MAIN EXAMINATION - APRIL. 2024

(Held On Tuesday 09 April, 2024)

M ATHEM ATICS

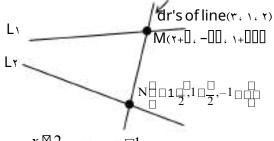

SECTION-A

Let the line Lintersect the lines

$$X - Y = -y = Z - 1$$
, $Y(X + 1) = Y(Y - 1) = Z + 1$

and be parallel to the $\lim_{\frac{x}{3}} \frac{x \boxtimes 2}{1} \square \frac{y \boxtimes 1}{1} \square \frac{z \square 2}{2}$.

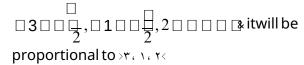
Then which of the following points lies on L ?

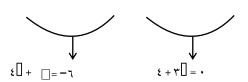


Ans. (Y)

$$(\mathfrak{r}) \ \frac{\square}{\square} \frac{1}{3}, \square 1, \qquad \qquad (\mathfrak{t}) \ \frac{\square}{\square} \frac{1}{3} 1, 1 \ \frac{\square}{\square}$$

$$(\mathfrak{z}) = \frac{1}{3} \mathbb{Z} 1, 1 = \frac{1}{3} \mathbb{Z} 1$$


Sol.



$$L1: \frac{x \boxtimes 2}{1} \square \frac{y}{\square 1} \square \frac{z \square 1}{1} \square \square$$

$$L2 : \frac{x \square 1}{\frac{1}{2}} \square \frac{y \square}{\frac{1}{2}} \square \frac{z \square}{1} \square \square$$

dr of line MN will be

TIME: 9:00 AM to 12:00 NOON

TEST PAPER WITH SOLUTION

 $\square \square Coordinate of M will be > \square^2, \frac{4}{3}, \frac{1}{3}, \square^1_{3} \square$

and equation of required line will be.

$$x \boxtimes_3^2 \quad y \boxtimes_3^4 \quad z \boxtimes_3^1$$

So any point on this line will be

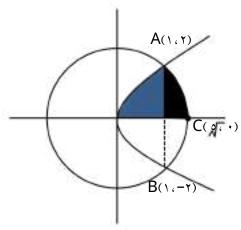
$$\begin{array}{c} \square^2 \square 3k, \stackrel{4}{3} \square k, \square \stackrel{1}{3} \square 2k \\ \square \end{array}$$

$$\therefore \frac{2}{3} \square 3k \square \square_{3}^{1} \square \square k \square \square_{3}^{1}$$

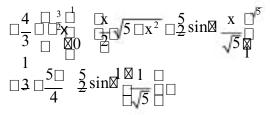
Point lie on the line for

$$k \square \square \frac{1}{3}$$
 is $\square \frac{1}{3}$, 1, $\square 1 \square$

The parabola $y = \xi x$ divides the area of the circle $x^{\gamma} + y = \hat{b}$ in two parts. The area of the smaller part is equal to :


$$(r) \ \frac{1}{3} \ \square \sqrt{5} \sin \boxtimes 1 \ \square \ 2 \ \square \ (\epsilon) \ \frac{2}{3} \ \square \sqrt{5} \sin \boxtimes 1 \ \square \ 2 \ \square \ \square$$

Ans.(1)


Sol.
$$y^{t} = \epsilon x$$

$$X^{Y} + Y = {}^{Y} \circ$$

□□Area of shaded region as shown in the figure will be

 $A_1 \square \boxtimes 0 4x dx \square \boxtimes 1 \sqrt{5 \square x^2} dx$

☐ Required Area = Y A

$$\square \frac{2}{3} \square \frac{5 \square}{2} \square 5 \sin^{\square} \square \frac{1}{\square \sqrt{5}} \square$$

$$\square \frac{2}{3} \square 5 \square \sin \square \frac{1}{\sqrt{5}} \square$$

$$3 \Box 5 \cos 2 \frac{1}{\sqrt{5}}$$

The solution curve، of the differential equation ٣.

 $2y \stackrel{dy}{dx} \boxtimes 3 \boxtimes 5 \stackrel{dy}{dx}$, passing through the point

(• , ١) is a conic, whose vertex lies on the line:

$$(1)YX + YY = 9$$

$$(Y) YX + YY = -9$$

$$\Gamma = V\gamma + X\gamma (\gamma)$$

$$\Gamma = V^{\gamma} + X^{\gamma} (3)$$

Sol.

$$\frac{\mathrm{d}y}{\mathrm{d}x} \square \square 3$$

 $\begin{array}{c} \text{Y) YX} \\ \text{Ans} \\ \text{22y} \text{35} \\ \frac{dy}{dx} \text{3} \end{array}$ $\boxtimes 2y \boxtimes 5 \boxtimes dy \boxtimes 3 dx$

$$2 \boxed{\frac{y^2}{2}} \Box 5y \Box \Box 3x \Box \Box$$

·· Curve passes through (• ، ١)

· Curve will be

$$\cdot \cdot \cdot \cdot \uparrow X + \uparrow \uparrow Y = 9$$

٤. $reflected \, from \, the \, point \, Q \, on \, the \, x\text{-}axis \, and \, then \,$ passes through the point R (٤, ٣). If the point S (h, k) is such that PQRS is a parallelogram at he'n hk is equal to:

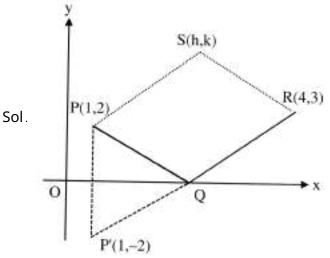
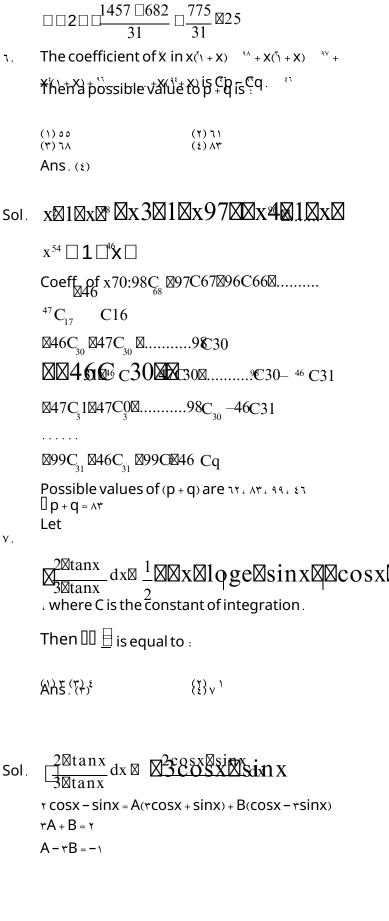


Image of P wrt x-axis will be $P'(1, -\tau)$ equation of line joining P'R will be

Above line will meet x-axis at Q where


$$y \boxtimes 0 \boxtimes x \boxtimes \frac{11}{5}$$

$$Q = Q = \frac{11}{5}, 0 = \frac{1}{5}$$

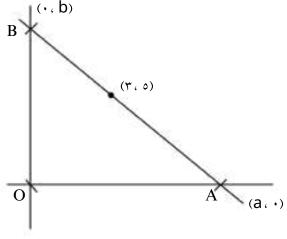
·· PQRS is parallelogram so their diagonals will bisects each other

$$\frac{4 \boxtimes 1}{2} \frac{1}{14} \frac{1}{2} \frac{1}{2} \frac{1}{8} \frac{2}{2} \frac{1}{3} \frac{1}{8} \frac{1}{20}$$

$$\frac{1}{2} \frac{1}{14} \frac{1}{2} \frac{1}{8} \frac{1}{2} \frac{1}{8} \frac{1}{20} \frac{1}{8} \frac{1}{20} \frac{1}{14} \frac{1}{14} \frac{1}{14} \frac{1}{20} \frac{1}{14} \frac{1}{20}$$

$$\square_{2}^{1} \boxtimes x_{\square} \ln 3 cosx \boxtimes sinx \boxtimes C$$

$$\square_{\frac{1}{2}}^{1}\square x\square n\square sinx\square \mathbb{C}OS X$$


A variable line L passes through the point (τ , \circ) and intersects the positive coordinate axes at the points A and B. The minimum area of the triangle I. We know that OAB, where O is the origin, is:

(7) #0

(4) £0

Ans. (1)

Sol.
$$\frac{x}{a} \square \frac{y}{b} \square 1$$

 $\frac{3}{a} \square \frac{5}{b} \square 1 \square \square \square \square 2 3, a \square 3$

$$A \square_{2}^{1} ab \square_{2}^{1} a \frac{5a}{\square a \square 3} \square_{2}^{5} \square_{a \square 3}^{a \square a}$$

Let

$$\cos 2\cos 60$$

Then, the sum of all [[]]. , Y[]], who

attains its maximum value, is:

(1) 4

(Y) \\[\]

(۳) ما

[[]ه ۱ (٤)

Ans. (۳)

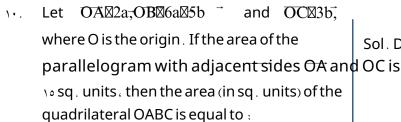
$$(\cos \square)(\cos (\neg \cdot \circ - \square)(\cos (\neg \cdot \circ + \square)) \square 1_{4\cos 3\square}$$

So equation reduces $t_{\text{pcos}3}^{\text{l}} = \frac{1}{8}$

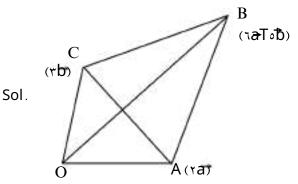
$$\Box \Box \cos 3\Box \Box \frac{1}{2}$$

$$\Box \Box \frac{1}{2} \Box \cos 3\Box \Box \frac{1}{2}$$

 \square maximum value of $\cos \pi \square \frac{1}{2}$, here


$$\square$$
 3 \square 2 n \square 3

$$\Box \ \Box \frac{2n\Box}{3} \Box \frac{\Box}{9}$$


As □ □ possible values are

$$\ \, \Box \, \, \frac{5}{9}, \frac{5}{9}, \frac{7}{9}, \frac{11}{9}, \frac{13}{9}, \frac{17}{9} \, \, \Box$$

$$\frac{9}{9} \square \frac{5}{9} \square \frac{7}{9} \square \frac{11}{9} \square \frac{13}{9} \square \frac{17}{9} \square \frac{54}{9} \square 6 \square$$

Ans. (ξ)

 $Area\,of\,parallelogram\,having\,sides$

$$OA \& OC \square OA \boxtimes OC \square 2a \boxtimes 3b \square 15$$

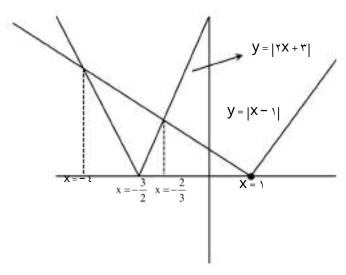
Area of quadrilateral

OABC
$$\boxtimes \frac{1}{2} | d1 \boxtimes d2$$

$$\frac{1}{2}$$
 AC MOB $\frac{1}{2}$ M3 $\frac{1}{2}$ a M6 $\frac{1}{2}$ b M

$$\square \frac{1}{2} |18b \square a - 10a \square b| \square 14a \square b|$$

$$\Box 14 \Box \frac{5}{2} \Box 35$$

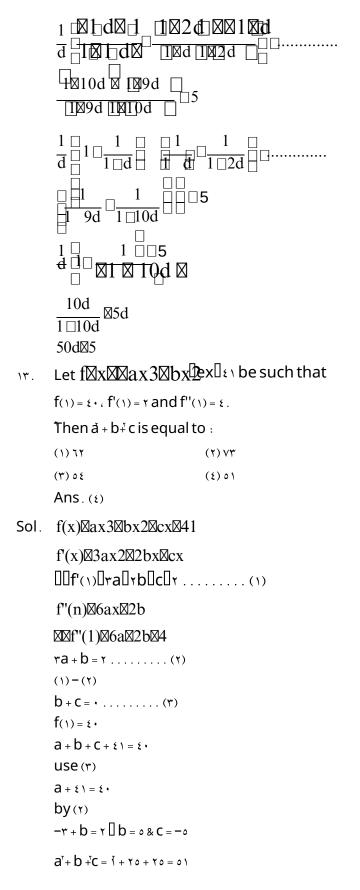

11. If the domain of the function

$$f \boxtimes x \boxtimes sin \boxtimes x \boxtimes 1 \boxtimes sis R - (\square \square)$$

then \vIII is equal to :

$$2x \square 3 \square 0 \& x \square \frac{\square^3}{2} \text{ and } \frac{\square \times \square}{2 \times \square 3} \frac{1}{\square \square}$$

$$|\mathbf{x} \boxtimes 1| \boxtimes |2\mathbf{x} \square 3|$$


$$\square\square\square4\&\square\square\square\frac{2}{3}:12\square\square\square32$$

17. If the sum of series

is equal to o, then od is equal to:

Sol. $\begin{array}{c|c}
1 & 1 \\
\hline
1 & d & 1 \\
\hline
1 & 1
\end{array}$ $\begin{array}{c|c}
1 & 3 \\
\hline
\hline
1 & 3 \\
\hline
\hline
2 & 3 \\
\hline
1 & 3 \\
\hline
2 & 3 \\
\hline
2 & 3 \\
\hline
3 &$

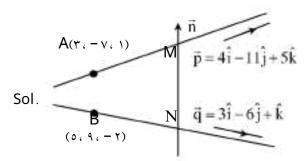
Let a circle passing through (Y. •) have its centre at ١٤. the point (h, k). Let (xc, yc) be the point of intersection of the lines $\forall x + oy = 1$ and $(\forall + c)x + c$ and $k \parallel 1$ limyc, then the ocy = \. If h□limx c⊠1 equation of the circle is: $(1) \Upsilon \circ X + \Upsilon \circ V - \Upsilon \circ X + \Upsilon V - \Upsilon \circ = \bullet$ $(\Upsilon) \circ X + \circ Y - \xi X - \Upsilon Y - \Upsilon \Upsilon = \bullet$ $(\Upsilon) \Upsilon \circ X \stackrel{7}{+} \Upsilon \circ y - \Upsilon X + \Upsilon y - \Im \cdot = \bullet$ $\bullet = YY + X - Y - Y - Y = \bullet$ Ans.(1) Sol. $x = \frac{1 \boxtimes c2}{2 \boxtimes c \boxtimes 3c2}, y = \frac{1 \boxtimes 3x}{5} = \frac{c \boxtimes 1}{5 \boxtimes 2 \boxtimes c \boxtimes 3c2}$ $h \square \lim_{c \bowtie 1} \frac{\square \square c \square \square \square c}{\square \square c} \square \frac{2}{5}$ $\begin{array}{c|c}
c \boxtimes 1 & 1 \\
C \boxtimes 1 \boxtimes 5 \square C & 1 \square 2 \square 3C
\end{array}$ Centre $\frac{\boxtimes 2}{\boxtimes 25}$, $\Box \frac{1}{25} \Box$

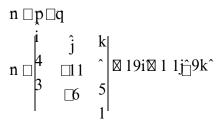
10.

is:

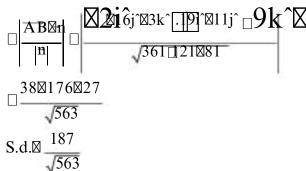
 $(1) \frac{187}{\sqrt{563}}$

 $\square \square 25x2 \square 25y2 \square 20x \square 2y \square 60 \square 0$


The shortest distance between the line


 $\frac{x \square 3}{4} \square \frac{y \square 7}{\square 1} \square \frac{z \square 1}{5}$ and $\frac{x \square 5}{3} \square \frac{y \square 9}{\square 6} \square \frac{z \square 2}{1}$

(r)
$$\frac{185}{\sqrt{563}}$$


$$(\mathfrak{t}) \frac{179}{\sqrt{563}}$$

Ans.(1)

 $S.d. = projection \ \vec{OABonn}$

The frequency distribution of the age of students in a class of ε students is given below.

Age	10	١٦	۱۷	١٨	19	۲.
No. of	0	٨	0	١٢	Х	У
Students	}					

If the mean deviation about the median is 1. You then £X + oy is equal to :

(1) & ٣

١٦.

(٢) ٤٤

(٣) ٤٧

(٤) ٤٦

Ans.(Y)

Sol.
$$x + y = 1 \cdot \dots (1)$$

Median = $1 \land 1 = 1 \land 1 = 1$

$$M.D.\square \frac{\square f_i \left| \begin{array}{c} x \square M \\ \vdots \end{array} \right|}{\square f_i \left| \begin{array}{c} x \square M \\ \vdots \end{array} \right|}$$

$$1.25 \boxtimes \frac{36 \square x \square 2y}{40}$$

$$X + \Upsilon y = \Upsilon \xi \dots (\Upsilon)$$

$$X = 7. Y = \xi$$

$$\exists \ \xi X + \circ y = \Upsilon \xi + \Upsilon \bullet = \xi \xi$$

Age(xi)	f	xi-M	fi xi – M
10	٥	۳	10
17	٨	T	17
17	0		0
١٨	17		
19	×	1	X
٧٠	у	-	ту
d			

v. The solution of the differential equation

$$(x^{\gamma}+y)dx - \circ xy dy = \cdot \cdot y(1) = \cdot \cdot is :$$

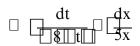
$$(1) \times {}^{2} \boxtimes 4 \times {}^{2} |^{5} \boxtimes x |^{2}$$

$$(\Upsilon) \times {}^{2} \boxtimes 2y2 | {}^{6} \boxtimes X_{2}$$

$$(r) \stackrel{*}{\times} 2 \qquad 2 \stackrel{6}{\boxtimes} X$$

$$(\xi) \times \left[\begin{array}{cc} 2 & 2y \end{array} \right]^5$$

Sol.
$$(x^{+}y) dx = 0xydy$$


Put y = Vx

$$\square \ V \square x \, \frac{dv}{dx} \, \square \frac{1 \boxtimes V^{\, 2}}{5 V}$$

$$\Box \frac{xdv}{dx} \stackrel{1\boxtimes 4V2}{=}_{5V}$$

Let
$$1 - \xi V = t$$

$$\Box - AV dV = dt$$

$$\ \, \square \, \frac{\square l}{8} ln \sharp \, \big| \, \square \, \frac{1}{5} ln \sharp \, \big| \, \square ln C$$

$$\square \ln x 8 \square \ln t 5 \square \ln K \boxtimes 0$$

$$\Box x8|t5|\Box C$$

$$\Box$$
 $x8|1-4V|^5\Box C$

$$\Box x^{8} \frac{x^{2} \boxtimes 4y^{2}}{x2} | \Box C$$

$$\Box |x^2 \Box 4y^2|^5 \boxtimes Cx2$$

given y(1) = •

⊠x2⊠4y2⊠x2⁄2́

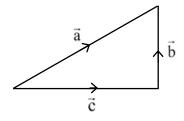
Let three vectors a النام الن

- b⊠5i^⊠3j^⊠4k^,c⊠xi^⊠yj^⊠zk^from a triangle such that c \Box a-band the area of the triangle is \Box o \Box is a positive real number \Box then c is :

(1)17

(٢) ١٤

(٣) 17


(٤) ١٠

Ans.(Y)

Sol. e⊠a⊠b →

$$\square (x, y, z) = (\square - 0, \gamma, -\gamma)$$

$$\square \, x = \square \text{--} \circ \circ y = \text{--} \circ$$

Area of = 0 $\sqrt{6}$ (given)

$$\frac{1}{2}|a\Box c|\Box 5\sqrt{6}$$

$$\begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \mathbf{k} \\ \square & 4 & 2 \\ \mathbf{x} & 1 & \square 2 \end{vmatrix} \square 10 \sqrt{6}$$

$$[](\xi [] - 1 \cdot) + (\xi \cdot - \tau []) = 0 \cdot \cdot ^{\tau}$$

[] [] = A (given [] is +ve number)

 $|c|^2 \boxtimes x 2 \boxtimes y 2 \boxtimes z 2$

= \ ٤

Let 🛚 ، 🖟 be the roots of the equation

$$x2 \boxtimes 2\sqrt{2}x-1 \boxtimes 0$$
. The quadratic equation.

whose roots are
$$+1$$
 and $\frac{1}{10}$ $\frac{1}{10}$

- $(1)X^{\frac{\gamma}{2}}$ (1)X + 9 (1)
- $\bullet = \Gamma \Gamma \S P + X \circ P / \frac{Y}{X} X (Y)$
- $(\Upsilon) X \stackrel{\Upsilon}{=} 190X + 90 \cdot 7 = \bullet$
- $\bullet = \Gamma \bullet \circ P + X \bullet A \wedge \frac{\Upsilon}{\Gamma} X (3)$

Ans. (۳)

$$=(\Lambda + \Upsilon) - \Upsilon(-1)$$

$$= 1 \cdot \cdot - 7 = 4$$

$$= ((\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix}) ((\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix}) - \Upsilon (\begin{bmatrix} 1 \\ 1 \end{bmatrix}) - \Upsilon (\begin{bmatrix} 1 \\ 1 \end{bmatrix})$$

$$= (- \Upsilon \sqrt{2} (\Lambda + \Upsilon)) + \Upsilon \Upsilon$$

$$= (\Lambda) ((\Upsilon \Upsilon)) + \Upsilon = \Psi \Upsilon \cdot$$

$$\frac{1}{10} ([] + []) = ^{7} \Psi \Upsilon$$

$$\times -^{\Upsilon} (\Psi \Lambda + \Psi \Upsilon) \times + (\Psi \Lambda) (\Psi \Upsilon) = \Upsilon \Upsilon$$

$$[X -^{\Upsilon} (\Psi \Lambda) + \Psi \Lambda) \times - \Upsilon = \Upsilon \Upsilon$$

a = fog(1), b = gof(r). If e and I denote the eccentricity and the length of the latus rectum of

the ellipse
$$\frac{x^2}{a} \frac{y^2}{b} \boxtimes 1$$
 , then $\land e + l$ is equal to .

(1)17

 $(Y) \Lambda$

۲ (۳)

(٤) 17

Ans.(Y)

Sol.
$$f(x) = x + g(x) = \frac{x}{x \square 9}$$

$$a = f(g()) = f$$

$$10 = 10$$

$$= f(1 \cdot) = 1 \cdot 9$$

$$b=g\left(f(r)\right)=g\left(\P+\P\right)$$

$$=g(1A)=\frac{18}{9}=1$$

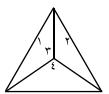
$$\mathsf{E}:\,\frac{x2}{109}\square\frac{y^2}{2}\;\square 1$$

$$e^{r} = 1 - \frac{2}{109} \square \frac{107}{4}$$

$$\ell \; \Box \frac{2 \boxtimes 2 \boxtimes}{\sqrt{109}} \Box \frac{}{\sqrt{109}}$$

$$8e2 \,\square \, \ell^2 \,\square \frac{8 \,\boxtimes 107}{109} \, \square \frac{16}{109}$$

= A


SECTION-B

c denote the outcome of three Let a, b and ۲١. independent rolls of a fair tetrahedral die, whose four faces are marked 1, Y, Y, E. If the probability

that $ax + bx + c = \cdot$ has all real roots is

gcd(m, n) = 1, then m + n is equal to _____

Sol a, b, c [€1, Y, Y, E)

Tetrahedral dice

 $ax^{4} + bx + c =$

has all real roots

$$\Box \Box D \Box 0$$

b 2 ■ 4 a c ■ 0

Let $b = 1 \square 1 \square 1 \square 2$ (Not feasible)

 $\sqrt{ac} = \sqrt{c} = \sqrt{c}$

$$b = 3 \square \square \square \square 9 \square 4ac \square 0$$

$$\frac{9}{4}$$
 \square

$$\Box\Box a = 1, c = 1$$

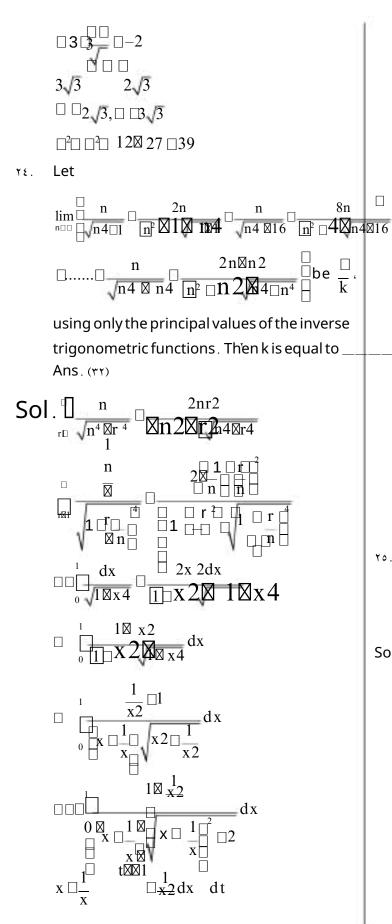
$$\Box\Box a = 1$$
, $c = 1$

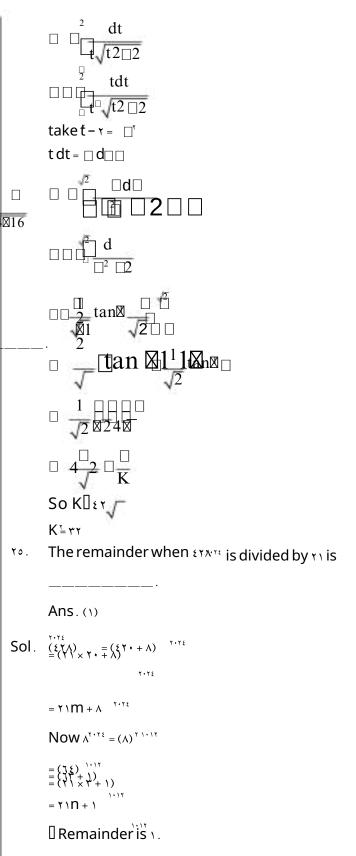
$$\Box\Box a = \gamma, c = \gamma$$

4⊠ac

$$\Box\Box a = 1, c = 1$$

$$\Box\Box a = 1, C = 1$$
 $\Box a = 1, C = 1a$


$$\Box\Box a = 1, C = \pi$$
 $\Box = \pi, C = 1, a = 1$


$$\Box\Box a = 1, c = \xi$$

$$\square \square a = Y, C = Y \square$$

Probability
$$\boxed{12}$$
 3 n

۲۲.	The sum of the square of the modulus of the		Points (\cdot, \cdot) , $(1, \cdot)$, $(1, \cdot)$, $(1, \cdot)$, $(1, -1)$		
	elements in the set		to find		
		X	$ z_1 ^2 \boxtimes 2 ^2 \boxtimes 3 ^2 \boxtimes 4 $	² \(\frac{1}{2} \) \(\frac{1}{2} \)	
	is		$= \cdot + \cdot = 9$		
	Ans. (٩)	۲۳.	Let the set of all posit	ive values of 🛭 ، for which the	
Sol.	z\ 2\ 1\ 1		point of local minimu		
	□□ □x □1□□iy □1□□ □□□x□1□□y2□1		(\ + X ($\frac{x2 \boxtimes x \boxtimes 2}{x2 \boxtimes 5 x \boxtimes 6} \Box \cdot \cdot be (\Box \cdot \Box) .$	
	√ ²		Then $\square + \square$ is equal to _	·	
	000x0\00y0\(1)		Ans. (٣٩)		
	Also $\mathbb{Z}[\cdot] \mathbb{Z}[\cdot] \mathbb{Z}[\cdot]$		$\frac{x^2 \square x \boxtimes 2}{x^2 \square 5 x \boxtimes 6} \boxtimes 0$		
			$\square \square \frac{1}{\boxed{\mathbb{X}} \square 2 \boxed{\mathbb{X}} \boxed{\mathbb{X}} 3 \square} 0$		
			5-421		
			+ 9 - 9 +		
			_1 _1		
	$\square\square\square x$ $\square 1$ $\square x$ $\square x$ $\square x$		X [] (-r, -r)		
	\(\times 2x2 \times 2x \times 0 \) \(\propto x \propto x \propto 1 \propto 0 \) \(\times x \times 0 \tau x \times 1 \) \(\times 0 \tau x \times 0 \tau x \times 1 \) \(\times 0 \tau x \times 0 \tau x \times 1 \) \(\times 0 \tau x \times 1 \tau x \times 1 \) \(\times 0 \tau x \times 1 \tau x \times 1 \tau x \times 1 \) \(\times 0 \tau x \times 1 \tau x \tim		$f(x) \square 1 \square \mathbf{x} \square \square$	2⊔x2⊔	
			Finding local minima		
			$f'(x) \square 2 \square^2 \square X$	2 <u>xM.</u> x	
			Put $f'(x) = \cdot$		
			0000± * X [†]		
	y = x		$\Box x \Box \Box \frac{\Box}{\sqrt{3}}$		
			s. = s. + s. = = s.		
	Zath		3 3		
			Local min Local m	ax	
	(1, .)		We want local min		
	, Kalmin				
			$\square \times \square \times \square \times \square$		
			from (1)		
	Given x، y□ I		$x \boxtimes \boxtimes 3, \boxtimes 2$		
	l l				

Y1. Leff: $(\cdot, \Box) \Box \mathbb{R}$ be a function given by

Where a_i b \square Z. If f is continuous at $\square_{\frac{1}{2}}^{\square}$, then

a^r+ b is equal to _____. Ans. (٨١)

Sol. LHLatx = $\frac{\square}{2}$

$$\lim_{x \to \infty} \frac{8}{x} \frac{\tan 8}{x} = \frac{8}{7} \frac{1}{1} \times 1$$

RHL at $x = \frac{\Box}{2}$

 $\lim_{x \, \mathbb{Z}} \, \mathbb{Z} \, \mathbb{I}_{|\mathbf{c}} \, \mathbb{Z}_{tx} \, |^{\frac{b}{2} t anx|}$

$$= e^{\lim_{x \to \frac{\pi}{2}} \sum_{k=0}^{\infty} \frac{h}{2} p_k a + x} \qquad \qquad \sum_{k=0}^{\infty} e^{\lim_{x \to \infty} \frac{h}{2}}$$

$$a + b = \lambda$$

Let A be a non-singular matrix of order τ . If $\det(\tau adj(\tau adj((\det A)A)))$ then $\tau m = \tau n$ is equal to

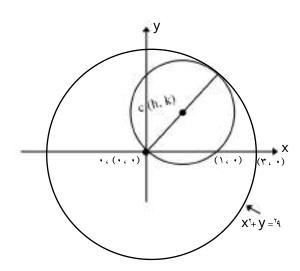
 $(radj(rA)) = r^m \square n$

Ans. (\ξ)

$$\begin{split} Sol. & \quad \left| \text{ψ adj($radj($|A|A)$)} \right| = \left| \text{ψ adj($radj($A)$)} \right| \\ & = \left| \text{ψ. r} \right| A \left| \text{$adj($adj($A)$)} \right| = r \psi \left| A \right| \left| A \right|^{\gamma r} & \quad \xi \\ & = r \psi \left| A \right| = r^{\gamma r} & \quad -\gamma \cdot \psi^{-\gamma r} \\ & \quad \left| \left| A \right| = r \psi \right| \left| A \right| = r \psi \end{split}$$

Now $|radj(rA)| = |r. \tilde{r}adj(A)|$

$$\begin{bmatrix}
-m & -n & \xi & \gamma \\
\gamma & \gamma & \gamma & \gamma & \gamma
\end{bmatrix}$$

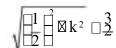

$$\begin{bmatrix}
m & -n & \xi & \gamma \\
\gamma & \gamma & \gamma & \gamma
\end{bmatrix}$$

$$[|rm + rn| = |-17 - r| = 15]$$

Let the centre of a circle, passing through the point (\cdot,\cdot) , (\cdot,\cdot) and touching the circle x+y=q, be (h,k). Then for all possible values of the coordinates of the centre (h,k), $\{(h,k)\}$ is equal to ______.

Sol.

Ans. (۹)


$$(x-h)^{r}+(y-k)=h+k^{r}$$

$$x^{\gamma}+y^{-\gamma} + hx - \gamma ky = \cdot$$

 \square passes through (\cdot, \cdot)

$$\boxed{h=1/7}$$

$$\square OC = \frac{OP}{2}$$

$$\frac{1}{4} \square k^2 \square^{\frac{9}{4}}$$

$$k' = r$$

$$k = \pm \sqrt{2}$$

$$\square \text{ Possible coordinate of}$$

$$c(h, k) \square^{\frac{1}{2}}, \sqrt{2} \square^{\frac{1}{2}}, \sqrt{2} \square^{\frac{1}{2}}$$

$$(h'+k) \stackrel{!}{=} \stackrel{!}{=} \stackrel{!}{=} \sqrt{2} \square^{\frac{1}{2}} = \stackrel{!}{=} \stackrel{!}{=} \sqrt{2} \square^{\frac{1}{2}} = \stackrel{!}{=} \sqrt{2} \square^{\frac{1}{2}} \square^{\frac{1}$$

 $\begin{array}{lll} \text{1.} & (\text{Y.}\ \xi)\,R\,(\text{Y.}\ \xi) & \text{Y.}\ (\text{Y.}\ \xi)\,R\,(\text{V.}\ \circ)\,\xi\,. \\ \\ \text{W.} & (\text{Y.}\ \circ)\,R\,(\text{V.}\ \xi) & (\text{W.}\ \xi)\,R\,(\text{V.}\ \circ)\,\,\text{X}. \\ \\ \text{O.} & (\text{W.}\ \circ)\,R\,(\text{Y.}\ \xi) & (\text{W.}\ \circ)\,R\,(\text{V.}\ \circ)\,\,\text{A}. \end{array}$

 $\begin{array}{lll} v_{+}(\tau,\tau)\,R\,(v_{+}\,\epsilon) & (\tau,\;\epsilon)\,R\,(v_{+}\,\tau)\,\,v_{+}\,. \\ q_{+}(\tau,\;\mathfrak{o})\,R\,(v_{+}\,\mathfrak{h}) & (\tau,\;\mathfrak{h})\,R\,(v_{+}\;\mathfrak{o})\,\,\mathsf{h}\,\mathsf{f}\,. \end{array}$

11. $(v,\lambda) R(v,\tau) = (\tau,\lambda) R(\tau,\xi)$

Total Υξ + 1 = Υο

18. (1,1) R(1,1)

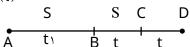
PHYSICS

SECTION-A

have
the same energies. Their de Broglie

the same energies. Their de–Broglie wavelengths (។) 🗓 📜 🖟 ្ជាប្រើប្រាប្រិក្ខាធិខាន់ នេះ (ខេត្ត ប្រាប្រិក្ខាធិខាន់ 🖒

Ans. (Y)


Sol. $\Box_{bB} = \frac{h}{P} \Box \frac{h}{\sqrt{rmk}}$

A particle moving in a straight line covers half the distance with speed \(\tau m / s\). The other half is covered in two equal time intervals with speed \(\frac{\pi}{4}\). The average speed of the particle during the motion is:

(1) A. A M /S (٣) 4. Y M /S (٢) \ · m /s (ξ) λ m /s

Ans.(٤) Sol.

٣٣.

A plane EM wave is propagating along x Aller direction. It has a wavelength of & mm. If electric field is in y direction with the sol. maximum equality of point agent is electric field is:

Ans. (1) Sol. $E = BC \square \exists \cdot = B \times r \times 1 \cdot$

TEST PAPER WITH SOLUTION

Electric field □ y direction Propagation □ x direction Magnetic field □ z-direction

Given below are two statements :

Statement (I): When an object is placed at the centre of curvature of a concave lens, image is formed at the centre of curvature of the lens on the other side .

 $Statement (II): Concave \ lens \ always \ forms \ a \\ virtual \ and \ erectimage.$

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is false but Statement II is true.
- (Y) Both Statement I and Statement II are false.
- (٣) Statement I is true but Statement II is false.
- (٤) Both Statement I and Statement II are true.

NTA Ans. (1)

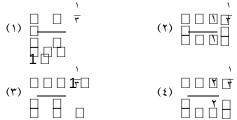
Allen Ans. (٢)

u f

v □ 2f □ □ f

√ □ 1 □ v = -۲f

v □ 1 □ v = -۲f

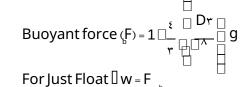

v □ 1 □ Virtual image of Real object.

In statement II $_{\rm c}$ it is not mentioned that object is real or virtual hence Statement II is false .

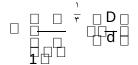
- A light emitting diode (LED) is fabricated using wv. 30. GaAs semiconducting material whose band gap is 1. 27 eV. The wavelength of light emitted from the LED is: (1) 70. nm (7) AVO nm
 - (Y) 1788 nm
 - (٤) \ ٤ • nm

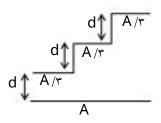
Ans. (٣)

- Sol. $\Box \Box \frac{Y \xi \cdot }{Y \cdot \xi \cdot Y} = AY \circ nm (Approx)$
- A sphere of relative density [] and diameter D has concentric cavity of diameter d . The ration of if it just floats on water in a tank is:



Ans.(1)


Sol. weight (w) = $\frac{\xi}{\tau} \frac{\Box D \tau \Box d \tau \Box}{\Delta g}$


 $[](D - ^r d)[] = D$

$$\square \ \, \stackrel{D^{\leftarrow}}{\square} \ \, \stackrel{\square}{\square}$$

A capacitor is made of a flat plate of area A and a second plate having a stair-like structure as shown in figure . If the area of each stair is and the height is d, the capacitance of the arrangement is:

 $(1) \frac{1}{1 \wedge d} \qquad (2) \frac{1}{1 \wedge d} \qquad (3) \frac{1}{1 \wedge d}$

(٣) \(\frac{11 \pi A}{2 \cdot d}\)

Ans. (1)

Sol. All capacitor are in parallel combination.

Also effective area is common area only

$$\Box C = \bigoplus_{eq} + C + C \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \Box$$

$$\Box C_{eq} \Box \frac{A}{r} \Box \uparrow \uparrow \Box$$

A light unstretchable string passing over a smooth light pulley connects two blocks of masses m and m. If the acceleration of the system is then the ratio of the masses is:

(٢) ٤: ٣

 $(\xi) \Lambda : 1$

Sol. asys mand g

- The dimensional formula of latent heat is: ٣٩.
 - (١) يَوْلِينَ **MLT** يَوْلِينَ (١)
- يَنْكِينَةِ MLT يَوْلِثُينَ (٢)
- (٣) <u>الله MLT</u>
- (٤) (٤) M'LT

Ans. (۳)

Sol. Latent heat is specific heat

- The volume of an ideal gas ([= 1.0) is change $d^{Ans.}(1)$ adiabatically from \circ litres to ε litres. The ratio of ol. $h = \pi \setminus A : \circ \square \square \square Re$ initial pressure to final pressure is:
 - (1) =
- (7)

Ans. (٣)

Sol. For Adiabatic process

$$P^{iVi} PV_f f$$

$$P_i(\mathfrak{d})^{-1}\mathfrak{d}=P(\mathfrak{t})^{-1}\mathfrak{d}$$

$$\begin{array}{c|c} P_i & \vdots & \vdots & \vdots & \vdots & \vdots \\ \hline P_f & \vdots & \vdots & \vdots & \vdots & \vdots \\ \hline \end{array} \begin{array}{c|c} & \vdots & \vdots & \vdots & \vdots \\ \hline O & \vdots & \vdots \\ O & \vdots & \vdots & \vdots \\ \hline O & \vdots & \vdots \\ O & \vdots &$$

- The energy equivalent of \(\text{g} \) of substance is: ٤١.
 - (1)) 1 2 V MeV
- (Y) 0.7 × 1 · MeV
- (٤) ٥. ٦ × ١ · MeV

Ans. (ξ)

Sol. E = mC

$$\begin{bmatrix}
E = (1 \times 1 \cdot) \times (7^{n} \times 1 \cdot)
\end{bmatrix}$$

$$\Box E = (1 \cdot) (9^{-1} \times 1 \cdot) (7 \cdot 7 \xi^{-1} \times 1 \cdot) eV$$

An astronaut takes a ball of mass m from earth ٤٢. to space. He throws the ball into a circular orbit about earth at an altitude of mix. km. From earth's surface to the orbit, the change in total mechanical GMm energy of the ball is x x + 1 he value of x is

(take R = 1844 km):

- (1)11
- (Y) q

- (٣) 11
- (£) 1 ·

$$T \square E = \frac{\square GMem}{R_e} \square$$

$$\mathsf{T} \square \mathsf{E}_{\mathsf{f}} = \frac{ \square \mathsf{GMem}}{\mathsf{r}(\mathsf{Re} \square \mathsf{h})} \square \frac{ \square \mathsf{GMm}}{\mathsf{r} \square \mathsf{Re} \square \mathsf{e}}$$

$$\boxtimes T \boxtimes Ef = \frac{\text{In GMem}}{\text{rnR}_{e}}$$

Change in total mechanical energy

$$= TE - TE$$

$$=\frac{\mathsf{GMem}_{\square}}{\mathsf{Re}}\,\square^{\frac{1}{\mathsf{T}}}\,\square^{\frac{1}{\mathsf{T}}}\square^{\frac{1}{\mathsf{T}}}\square^{\mathsf{T}}\mathsf{Re}$$

Given below are two statements: ٤٣.

> Statement (I): When currents vary with time . Newton's third law is valid only if momentum carried by the electromagnetic field is taken into account.

Statement (II): Ampere's circuital law does not depend on Biot-Savart's law.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both Statement I and Statement II are false.
- (Y) Statement I is true but Statement II is false.
- (٣) Statement I is false but Statement II is true.
- (٤) Both Statement I and Statement II are true.

Ans. (Y)

Sol. Conceptual.

- A particle of mass m moves on a straight line with its velocity increasing with distance Sol. ब्रेइ**६९६५६। विक्रि**केशे विकास ant. The total work done by all the forces applied on the particle during its displacement from $x = \cdot$ to $x = d_{\iota}$ will be:

- (٤) Ym[]d

Ans. (۳)

Sol.
$$v \square \square \overline{X}$$

 $at x = \cdot : v = \cdot$
 $at x = d : v \square \square \overline{d}$
 $W.D = K_f - K_i$
 $v \square \square \overline{d}$
 $v \square \square \overline{d}$

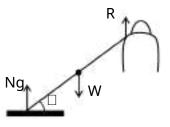
A galvanmeter has a coil of resistance * . . D with a full scale deflection at Y. DA. The value of resistance to be added to use it as an ammeter of range (+-++) mA is:

- (1) . ٤ []
- (۲) . ۲ []
- (٣) ٠.٥٠
- (٤) ٠. ١٠ []

Ans. (Y)

Sol.
$$G = Y \cdot \cdot \Box$$

 $i = Y \cdot \Box A$



- $\square S \square \square \cdot . \tau \square \square$ ٤٦.

A heavy iron bar ، of weight W is having its one ဧက်d ٔ on the ground and the other on the shoulder of a The weight experienced by the person is:

- (1) <u>+</u>
- (٤) W sin []
- (٣) W cos []

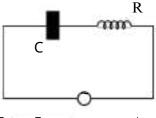
Ans.(1)

R = net reaction force by shoulder Balancing torque about pt of contact on ground:

 $\square R \square \frac{W}{}$

One main scale division of a vernier caliper is egual to m units. If n division of main scale coincides with (n + 1) division of vernier scale. the least count of the vernier caliper is:

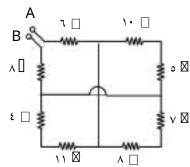
Ans. (Y)


Sol. n MSD = (n + 1) VSD

 $L\square C = 1 MSD - 1 VSD$

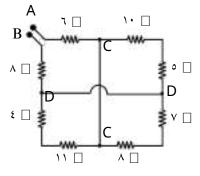
$$L\square C = m \square m \square n \square \square$$

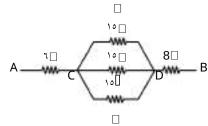
A bulb and a capacitor are connected in series across an ac supply. A dielectric is then placed person. The bar makes an angle \square with the horizontal between the plates of the capacitor. The glow of the bulb:


- (1) increases
- (Y) remains same
- (٣) becomes zero
- (¿) decreases

due to dielectric $C \square \square X \square \square Z \square$

brighter.


The equivalent resistance between A and B is: ٤٩.



- (1) \ \ \
- (٢) ٢٥
- (٣) ٢٧ 📙
- (£) 19 |

Ans. (ξ)

Sol.

A sample of \ mole gas at temperature T is adiabatically expanded to double its volume. If adiabatic constant for the gas is $\prod_{\overline{\chi}}^{r}$, then the work done by the gas in the process is:

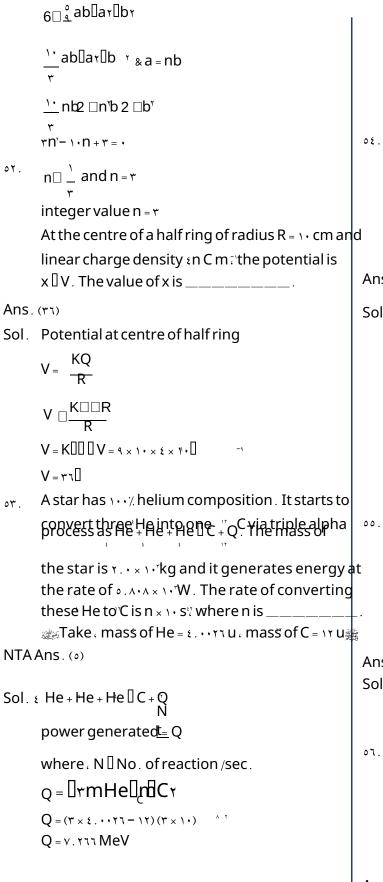
Ans. (1)

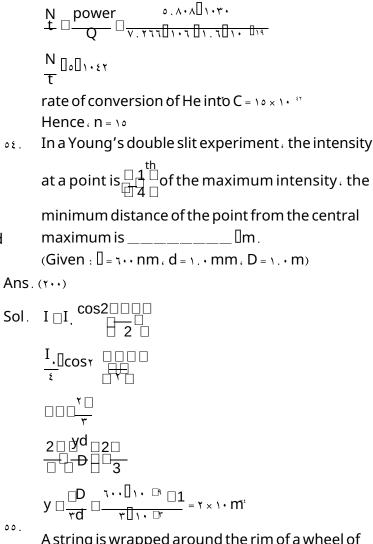
 $\Box \quad \mathsf{T}(V)^{\frac{r}{r}} \Box \mathsf{1}_{\Box T} \mathsf{f} \Box \mathsf{r} \mathsf{V} \Box \mathsf{r} \mathsf{f}$

□□▼ □ T □

 \square W.D. = Υ RT \square \square \square

 \square W.D. = RT \square

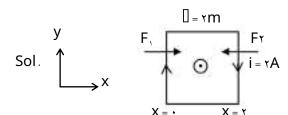

SECTION-B


If a and makes an angle $\cos^{\Box 1} \frac{\Box}{\Box_{4}} \frac{\Box}{\Box}$ with each other, then a by for a n b The integer value of n is _____

Ans. (۳)

Sol. cos D ^

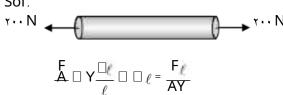
|-a□b || √ | a· □b |



A string is wrapped around the rim of a wheel of moment of inertia kǧm and radius . . . cm . The wheel is free to rotate about its axis . Initially the wheel is at rest . The string is now pulled by a force of . N . The angular velocity of the wheel after . . sis x rad /s . where x is ______.

A square loop of edge length τ m carrying current of τ A is placed with its edges parallel to the x-y axis. A magnetic field is passing through the x-y plane and expressed as $B B \cdot (\tau \times x) k^{\epsilon}$, where $B = \sigma T$. The net magnetic force experienced by the loop is _______ N.

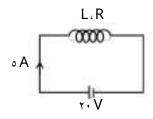
Ans. (١٦٠)

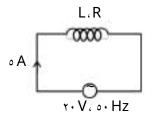

 $B(X = \cdot) = B_{\cdot}$ B(X=Y)=9BAlso, F = i□B

$$\Box F = i \Box B \& F = 4i \Box B$$

$$F = F - F = Ai \square B = A \times Y \times Y \times O$$

Two persons pull a wire towards themselves. ‡ach ٥٧. person exerts a force of Y · · N on the wire. Young's modulus of the material of wire is $1 \times 1 \cdot N m$. Original length of the wire is 1 mand the area of cross section is Y'cm. The wire will extend in length by _____


Ans. (Y) Sol.


$$\Box = \frac{\mathsf{Y} \cdot \mathsf{A} \cdot \mathsf{D} \mathsf{Y}}{\mathsf{Y} \cdot \mathsf{D} \cdot \mathsf{A} \cdot \mathsf{D} \cdot \mathsf{D} \cdot \mathsf{D} \cdot \mathsf{D}} = \mathsf{Y} \times \mathsf{A} \cdot \mathsf{C} = \mathsf{Y} \cdot \mathsf{D} \mathsf{D} \mathsf{D}$$

When a coil is connected across a v. V do supply, it draws a current of • A. When it is connected across *• V. •• Hz ac supply. it draws a current of & A. The self inductance of the coil is $____$ mH. (Take $\boxed{}$ = \forall)

Ans. (1.) Sol. Case_I:

$$i = \frac{r}{R} \square R = \epsilon \square$$
Case-II:

$$\begin{split} \dot{I} &= & \frac{\Upsilon}{Z} \\ \dot{\epsilon} &= & \frac{\Upsilon}{R\Upsilon \square X\Upsilon} \square R\Upsilon \square X\Upsilon \qquad \square \square o \\ R^{\Upsilon} &+ & X\Upsilon \square \square = \Upsilon \square \square \square \end{split}$$

$$L = \frac{\pi}{\sqrt{\|f\|}} \frac{1}{\sqrt{\|g\|}} \frac{1}{\sqrt{1 \cdot \cdot \cdot \cdot}} mH$$

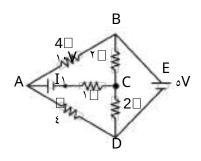
The position, velocity and acceleration of a particle executing simple harmonic motion heer/feormachtoitudes of & m. Y ms and 17 ms at a certain instant. The amplitude of the motion is

Jx m where x is ____

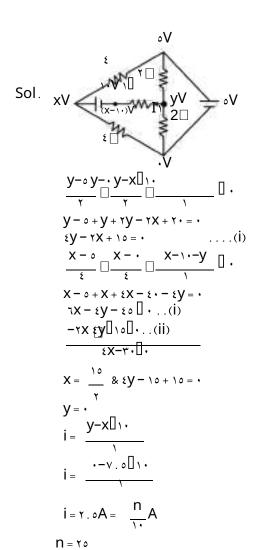
Ans. (1V)

٥٩.

 $X = \{ m, V = Y m / s, a = NT m / s^T \}$ Sol.

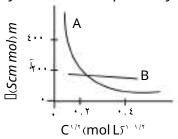

 $\square = \forall rad/s$

 $V = \Box A \Upsilon - X \Upsilon$


$$A = \sqrt{\frac{VY}{\Box 2}} \, \boxed{XY} \, \boxed{A} = \sqrt{\frac{\xi}{\xi}} \, \boxed{YY}$$

A = 1ym

The current flowing through the \ \ \ \ \ resistor is A . The value of n is ______


Ans. (Yo)

CHEMISTRY

SECTION-A

The molar conductivity for electrolytes A and B are plotted against C'/ as shown below. Electrolytes A and B respectively are:

Α

(1) Weak electrolyte weak electrolyte

(Y) Strong electrolyte strong electrolyte

(r) Weak electrolyte strong electrolyte

В

(£) Strong electrolyte weak electrolyte

Ans. (٣)

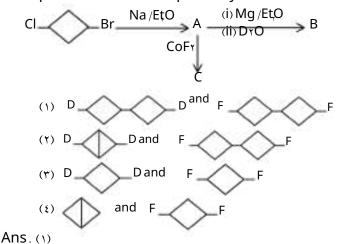
Sol. A \(\text{Weak electrolyte} \)

B Strong electrolyte

Methods used for purification of organic compounds are based on :

(1) neither on nature of compound nor on the impurity present.

(Y) nature of compound only.


(r) nature of compound and presence of impurity.

(٤) presence of impurity only.

Ans. (۳)

Sol. Organic compounds are purified based on their nature and impruity present in it.

In the following sequence of reaction، the major products B and C respectively are:

TEST PAPER WITH SOLUTION

Sol.

Na /Eţ O Cl Br CI CI Wurtz Reaction (A) (i) Mg/EtO CoF Swart (ii) DO Reaction F F D D (C) (B)

૧٤. Correct order of basic strength of Pyrrole

Pyridine and Piperidine $_{N}$ is:

(١) Piperidine < Pyridine < Pyrrole

(Y) Pyrrole < Pyridine < Piperidine

(٣) Pyridine < Piperidine < Pyrrole

(£) Pyrrole < Piperidine < Pyridine

Ans.(1)

Order of basic strength is

N(sp', localized lone pair) < N(sp', localized lone pair) < N(sp', delocalized lone pair, aromatic)

☐ Piperidine < Pyridine < Pyrrole

In which one of the following pairs the central

atoms exhibit sp hybridization s

(1) BFr and NO 1

(Y) NH 1 and HYO

(٣) HrO and NOr

(٤) NH ☐ r and BFr

Ans.() Sol. BF+ 1sp ,

NOr sp

H₇O ☐sp ^r

NO₁ sp 1

NHr[sp *

- The Fions make the enamel on teeth much harder Sol. Oxidation state of an element in a particular by converting hydroxyapatite (the enamel on the surface of teeth) into much harder fluoroapatite having the formula.
 - (1) @%*(Ca*(PO٤)*). CaFt 🍇
 - $(\Upsilon) & \Upsilon(Ca\Upsilon(PO\xi)\Upsilon). Ca(OH)\Upsilon$
 - (٣) @ * (Car(PO ٤) *). CaF * (@
 - (٤) @r(Car(PO٤)٢). Ca(OH)٢ @

Ans.(1)

Sol. Fluoroapatite www.car(PO٤)٢.CaF٢.

Relative stability of the contributing structures is :

- (1)(I)<(III)<(II)
- $(\Upsilon)(I) < (II) < (III)$
- $(\Upsilon)(II) < (I) < (III)$
- $(\xi)(III) < (II) < (I)$

Ans. (Y)

- Sol. (1) Neutral structures are more stable than charged ones. Therefore I is more stable than II and III.
 - (Y) +ve charge on less electronegative atom is more stable i.e. Cis more stable than O
- Order is I < II < III П Given below are two statements: ٦٨.

Statement (I): The oxidation state of an element in a particular compound is the charge acquired by its atom on the basis of electron gain enthalpy consideration from other atoms in the molecule. Statement (II) : $p \Box - p \Box$ bond formation is more prevalent in second period elements over other periods.

In the light of the above statements , choose the $^{Ans.(r)}$ most appropriate answer from the options g $|v \otimes v|$. The benzyl group acts in much the same way using below:

- (1) Both Statement I and Statement II are incorrect
- (Y) Statement I is correct but Statement II is incorrect
- (٣) Both Statement I and Statement II are correct
- (٤) Statement I is incorrect but Statement II is correct

compound is defined by the charge acquired by its atom on the basis of electronegativity consideration from other atoms in molecule.

Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R):

Assertion (A) : SNY reaction of CyHoCHyBr occurs

more readily than the SN_Y reaction of CHrCHrBr.

Reason (R) The partially bonded unhybridized p-orbital that develops in the trigonal bipyramidal transition state is stabilized by conjugation with the phenyl ring. In the light of the above statements, choose the most appropriate ignswer from the entions given below e correct but (R) is not the correct explanation of (A)

- (Υ) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- $(\mathfrak{t})(A)$ is correct but (R) is not correct

the 🛘 - system of the benzene ring for conjugation with the p-orbital in the transition state.

Ans. (ξ)

increasing pKa value:

(E) HO
$$\bigcirc$$
 OCH
(\)(E)>(D)>(C)>(B)>(A)

- (Y)(D)>(E)>(C)>(B)>(A)
- $(\forall) (E) > (D) > (B) > (A) > (C)$
- $(\xi)(B)>(D)>(A)>(C)>(E)$

Ans. BONUS

NTA Ans. (٤)

Sol. Acidic strength order :-B < D < C < A < ECorrect pKa Order: B > D > C > A > E

All options are incorrect.

Given below are two statements: one is labelled as Assertion (A): and the other is labelled as Reason (R). Assertion (A): Both rhombic and monoclinic sulphur exist as Sa while oxygen exists as Or. Reason (R): Oxygen forms pl-pl multiple bonds. with itself and other elements having small size and high electronegativity like C ، N ، which is not possible for sulphur.

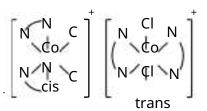
In the light of the above statements ، choose the most appropriate answer from the options given below:

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (Υ) Both (A) and (R) are correct but (R) is not the correct explanation of (A).
- (Υ) (A) is correct but (R) is not correct.
- (£) (A) is not correct but (R) is correct.

Ans. (۳)

For the given compounds, the correct order of Sol. Oxygen can form vp - vp multiple bond with itself due to its small size while sulphur cannot form multiple bond with itself as rp[]-rp[] bond will be unstable due to large size of sulphur, but sulphur can form multiple bond with small size atom like C and N. eq. S=C=S

S=C=N S C D


Given below are two statements: one is labelled as ٧٢. Assertion (A) and the other is labelled as Reason (R). Assertion (A): The total number of geometrical isomers shown by Co(en) Clr complex ion is three Reason (R): Co(en) Clt complex ion has an octahedral geometry.

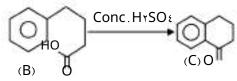
In the light of the above statements, choose the mos appropriate answer from the options given below:

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- $(\Upsilon)(A)$ is correct but (R) is not correct.
- $(\mathfrak{P})(A)$ is not correct but (R) is correct.
- (£) Both (A) and (R) are correct but (R) is not the correct explanation of (A).

Ans . (۳)

Sol. Co(en) Clie has octahedral geometry with two geometrical isomers.

The electronic configuration of Cu(II) is rd whereas that of Cu(I) is $\forall d$. Which of the following is correct 9


- (1) Cu(II) is less stable
- (Υ) Stability of Cu(I) and Cu(II) depends on nature of copper salts
- (٣) Cu(II) is more stable
- (£) Cu(I) and Cu(II) are equally stable

Ans. (۳)

Sol. Cu(II) is more stable than Cu(I) because hydration energy of Cti ion compensate IE r of Cu.

What is the structure of Cs

Ans. (۱)

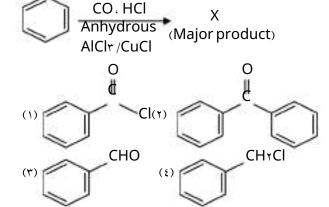
vo. Compare the energies of following sets of quantum numbers for multielectron system.

Sol. Energy level can be determined by comparing (n+1) values

(A)
$$n = \xi$$
, $n = 1$ $(n + 1) = 0$

(B)
$$n = \xi$$
, $n = \eta$ $(n + 1) = \eta$

$$(C) n = \forall i = 1 (n + 1) = \xi$$


(D)
$$n = r$$
, $n = r \cdot (n + 1) = 0$

(E)
$$n = \xi$$
, $n = \frac{\xi}{2}$ ($n + \frac{\xi}{2}$) = $\frac{\xi}{2}$

For same value of $(n + \square)$, orbital having higher value of n, will have more energy.

$$(B) \land (A) \land (D) \land (E) \land (C)$$

Identify major product 'X' formed in the following reaction:

Ans. (٣)

Sol. This is Gattermann–Koch reaction CHO

vv. Identify the product A and product B in the following set of reactions.

(1) A-CH*CH*CH*-OH, B-CH*CH*CH*-OH

фн

(۴) A-CHr-CH-CHr ، B-CHrCHrCHr-OH
OH

(٤) A-CH*CH*CH*، B-CH*CH*CH* Ans. (*)

Ans. (ξ)

- Sol. (1) Hydration Reaction:
 - $\mathsf{CH}_{\tau} \, \square \mathsf{CH} \square \mathsf{CH} \quad {}_{\tau} \, \square \mathsf{H} \, \square \, \square \square \square \, \mathsf{CH}_{\tau} \, \square \overset{\mathsf{C}}{\subset} \mathsf{H} \, \square \, \mathsf{CH}_{\tau} \\ \text{(More stable)}$

(٢) Hydroboration Oxidation Reaction:

*CH+CH=CH , + BH, ☐T ☐HIF

r(CHrCHrCHr)rB

(CHCHCH)B[]*HO[][][]

rCH CH CH ÓH∏H BÔ

- VA. On reaction of Lead Sulphide with dilute nitric acid which of the following is not formed 9
 - (1) Lead nitrate
- (Y) Sulphur
- (٣) Nitric oxide
- (٤) Nitrous oxide

Ans. (ξ)

- Sol. PbS + HNO τ Pb(NO τ) τ + NO + S + H τ O Nitrous oxide (N τ O) is not formed during the reaction.
- va. Identify the incorrect statementsregarding primary standard of titrimetric analysis
 - $\textbf{(A)} \, It \, should \, be \, purely \, available \, in \, dry \, form \, .$
 - (B) It should not undergo chemical change in a_{Λ_1}
 - (C) It should be hygroscopic and should react with another chemical instantaneously and stoichiometrically.
 - $(D) \, It \, should \, be \, readily \, soluble \, in \, water \, .$
 - (E) KMnO & NaOH can be used as primary standard.

Choose the correct answer from the options given below:

- (1)(C) and (D) only
- $(\Upsilon)(B)$ and (E) only
- $(\Upsilon)(A)$ and (B) only
- $(\varepsilon)(C)$ and (E) only

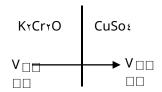
Ans. (ξ)

Sol . KMnO ϵ & NaOH \square Secondary standard .

Primary standard should not be Hygroscopic.

A... •..• M CuSO & when treated with •..• M KrCrrOv gives green colour solution of CurCrrOv. The SPM : Semi Permeable Membrane

EWELO .


SideX SPM SideY

Due to osmosis : (1) Green colour formation observed on side Y. (1) Green colour formation observed on side X.

- (٣) Molarity of K۲C۲۲Ov solution is lowered.
- (٤) Molarity of CuSO ϵ solution is lowered.

Ans. (ξ)

Sol. Only solvent Molecules are allowed to pass through the SPM.

SECTION-B

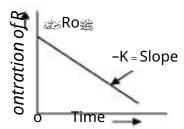
The heat of solution of anhydrous CuSO and CuSO HYO are -v · kJ mol and + \Y kJ mol -\Y respectively.

The heat of hydration of CuSO ٤ to CuSO ٤ do H vO is -x kJ. The value of x is _____.

Ans. (AY)

(1) CuSO (s) HO HO DATE CUSO (ad)

 $\begin{array}{c|c} \text{CuSO} & \text{HOIHO} & \text{112} \text{CuSO} \text{(aq)} \\ \hline & \text{cuSOIHO} & \text{112} \text{CuSO} \text{(aq)} \\ \end{array}$

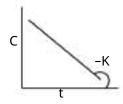

from (1) & (1)

 $\neg \lor \bullet = X +)$

 $X = -\lambda Y$

AY. Given below are two statements:

Statement I : The rate law for the reaction $A+B \square C$ is rate $(r)=k \square A \square B \square C$. When the concentration of both A and B is doubled α the reaction rate is increased "x" times. Statement II :


The figure is showing "the variation concentration against time plot" for a "y" order reaction.

The value of x + y is _

Ans. (A)

Sol. $r = K \otimes A \otimes |B|$

if conc. are doubled

 \square Zero order, $y = \cdot$

X + Y = A

How many compounds among the following compounds show inductive, mesomeric as well as hyperconjugation effects?

Ans. (ξ)

The standard reduction potentials at YAA K for the following half cells are given below:

 $Fe^{r}(aq) + re \square \exists Fe$

re (aq) + re uure

 $Ni^{\dagger}(aq) + \tau e \cdot | Ni$ $Aq^{\dagger}(aq) + e \cdot | Aq$

Au^r(aq) + re [] Au

Consider the given electrochemical reactions.
The number of metal(s) which will be oxidized be

Cr₁O∜، in aqueous solution is ___

Ans. (۳)

Sol. Fe, Ni, Ag will be oxidized due to lower S.R.P.

Ans. (Y)
Sol. H + OH [] HYO [] X
YH'+ YOH [] YHYO [] YX = Y
y/X = Y

Molarity (M) of an aqueous solution containing x g of anhyd. CuSO in or mL solution at rr °C is r x 1 · M. Its molality will be __________ v · m.

Il as (nearest integer).

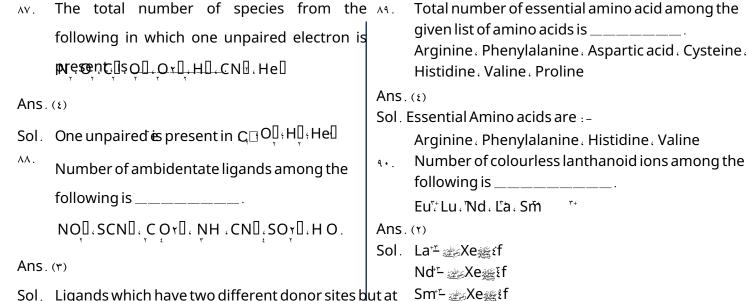
Given density of the solution = 1.10 g/mL.

NTA Ans. (A1) BONUS

Sol.

Mass of solute $(X) = \cdot . \cdot \times \cdot . \circ \times \cdot \circ \cdot . \circ$

= 10.90


nsolute = • . \ (

Mass of solvent = Mass of solution - Mass of solute

= 770 - 10.90

= 7 • 9 . • 0

m 🛮 • . ١٦٤ 🖂 ١٦٤ 🖟 ١٠ 🖟

Eu[™] ﷺXe ﷺ ڏf

Latand Lu do not show any colour because no

unpaired electron is present.

Sol. Ligands which have two different donor sites but at a time connects with only one donor site to central metal are ambidentate ligands.

Ambidentate ligands are NO + SCN + CN