JEE Mains Physics Formulas

Check Important Formulas List

Topic - 1: Vectors

- The Resultant Vector is written as $?^{?} = A + ?^{?}$ or $?^{?} = \sum_{k=1}^{n} A^{k}$
- The Resultant Vector in Cartesian Form is $R = \sqrt{A^2 B + 2AB \cos \theta}$ where θ is the angle between the two vectors.
- If A = Ax??+Ayj+Az?? then the Direction Cosines are $cos\alpha = A/A_x cos\beta = A/A$ and $cos\gamma = Az/A$
- Dot Product: $A \stackrel{???}{:} = ABcos\theta$ where θ is the angle between the two vectors
- If A = Ax??+ $Ay\hat{j} + Az$?? and ?`?` = $Bx\hat{i} + By\hat{j} + Bz$?? then the Dot-Product is $A \cdot ?`?` = AB + AB + _{yy} AzBz$
- Cross Product: $A \times ??? = ABsin\theta$??? where ??? is a Unit Vector perpendicular to both A and ???
- If A = Ax?? + Ayj + Az?? and ?? = Bxi + Byj + B?? then the Cross-Product is given by the Determinant

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

• $i \times j = ??, j \times ?? = i$ and $?? \times i = j$

•
$$\frac{d}{dt}(\vec{A} \cdot \vec{B}) = \frac{d\vec{A}}{dt} \cdot \vec{B} + \vec{A} \cdot \frac{d\vec{B}}{dt}$$

• $\frac{d}{dt}(\vec{A} \times \vec{B}) = \frac{d\vec{A}}{dt} \times \vec{B} + \vec{A} \times \frac{d\vec{B}}{dt}$

Topic - 2: Kinematics

- v = dr / dt and a = dv / dt and $a = dr^2/dt^2$ • For 1-D Motion: a = v(dv/dx)• $v =?^??^* + a t, s =?^??^* t + (1/2)a t^2 and v^2 = u + 2as$ • $s_n - s_{n-1} = ?^??^* t + (a/2)(2n-1)$ • v (relative)=v (actual)-v (reference) • Projectile Motion Initial Horizontal Velocity is $x u = u \cos \theta$ • Projectile Motion Initial Vertical Motion is $y u = u \sin \theta$ • Velocity at any instant of a Projectile Motion is $v = u \cos \theta$ i + ($u \sin \theta - gt$) j • Horizontal Distance at any time is $x = u \cos \theta$ • Time of Flight is $T = 2u \sin \theta/g$ • Maximum Height of the Projectile is $H = u \sin \theta^2/2g$ • Horizontal Range is $R = u \sin 2\theta/g$
 - Honzonial Range is $R = u \sin 2\theta/g$
 - Equation of Trajectory is $y = xtan\theta gx/(2tcos\theta)^2$ ²
 - Time of Flight for the Horizontal Projection from a cliff is $T=\sqrt{2h/g}$
 - Horizontal Range for the Horizontal Projectile from a cliff is R=uT

Angle of velocity at any instant for Horizontal Projection from a cliff is $\alpha = arctan(gt/u)$

Topic - 3: Laws of Motion and Friction

- Fundamental Forces of Nature are Gravitational Force, Electromagnetic Force, Weak Nuclear Force and Strong Nuclear Force.
- F = dp / dt and F = ma is mass is constant
- for the function for the function of the fu
- Acceleration of Pulley when both masses are downwards is $a = \frac{m1 m2}{g/(m1 + m2)}$
- Tension in the string of a Pulley System when masses are downwards is T=2m1m2g/(m1+m2)
- Man in a lift going upwards: Fnet=m(g+a)
- Man in a lift going upwards: Fnet=m(g-a)
- Centripetal Force is $F=mv2/r=m\omega2r$
- Static Frictional Force is $f=\mu sN$ where N is the Normal Force on the object
- Kinetic Frictional Force is $f=\mu kN$ where N is the Normal Force on the object
- Angle of Friction is arctanµ
- Block sliding on an incline with angle of Repose α : $f=mgsin\theta$ and $N=mgcos\theta$

Topic - 4: Work Power and Energy

• Work Done $W=F \cdot d$ when distance is non-variable and $W=\int_{a}^{b} F \cdot s$ when distance is variable

Example 1 Final Energy K=mv2/2

• Potential Energy U=mgh+h where h is the height from the reference line

• Conservative Force $F = -\nabla U$, in 1-D, it is F = -dU/dx

- Work Energy Theorem: W (all forces)= ΔK =Kf-Ki
- Power $P=F \cdot v$ or P=W/t

Topic - 5: Circular Motion

- Time Period T=1/f is reciprocal of Frequency
- $\theta = l/r, \omega = d\theta/dt = 2\pi/T = 2\pi f$ and $\alpha = d\omega/dt$
- $\omega = v/r \text{ or } v = ??? \times r$
- Net acceleration $a = \alpha \times r + ? \stackrel{?}{?} \times v$ and $a = \sqrt{(\omega 2r)^2 + (\alpha r)^2}$
- Maximum velocity without skidding is $v = \sqrt{\mu Rg}$

• Maximum velocity for banked ro $\frac{\mu + tan\theta}{1 - \mu tan\theta}$

• Bending of a Cyclist: $v \leq \sqrt{r * g * tan \theta}$

Check Best JEE Main Physics Books Here!

• Condition to complete the vertical circle is $u \ge \sqrt{5gR}$

• Condition for leaving path is $\sqrt{2gR} < u < \sqrt{5gR}$

• Condition for Oscillation is $u \le \sqrt{2gR}$ and the Tension in the string is

 $T=mgcos\theta+mv2/R$

Topic - 6: Center of Mass

- The Center of Mass along the *x*-axis is $X \qquad CM = (1/M) \sum_{l=1}^{\infty} mixi$ where *M* is the total mass
- The Center of Mass along the y-axis is Y
- The Center of Mass along the *z*-axis is $Z = CM = (1/M) \sum_{i=1}^{n} n_{i=1}$

 $CM = (1/M) \sum_{l=1}^{M} mixi$ where *M* is the total mass $CM = (1/M) \sum_{l=1}^{M} mixi$ where *M* is the total mass $CM = (1/M) \sum_{l=1}^{M} mixi$ where *M* is the total mass $CM = (1/M) \sum_{l=1}^{M} mixi$

• The Center of Mass for Continuous Distribution is $RCM = (1/M) \int r dm$

• If the total mass is *M* and a small part of mass *m* is removed then the Center of Mass is given by $XCM = (Mx - m\chi)/(M - m), YCM = (My - m\gamma)/(M - m)$ and $ZCM = (Mz - m\zeta)/(M - m)$

- The Center of Mass when the object is moving with some velocity is $v_{CM} = (1/M) \sum_{i=1}^{n} mivi$
- The Center of Mass when the object is moving with some acceleration is $aCM = (1/M) \sum n_1$ miai
- Coefficient of Restitution is $e = (v2 v1) \div (u1 u2)$
- Law of Conservation of Linear Momentum: $\sum n_{i=1} m \mu = \sum n_{i=1} m j v j$
- Loss of Kinetic Energy in inelastic collision is $\Delta K = (1/2M)[mm(1 e^2)(u u^2)]$
- Law of Conservation of Linear Momentum for Oblique Collision is $\sum n_{i=1}$ $m_{\ell i}^{2}?^{2} = \sum_{j=1}^{n} m_{j} v_{j}$
- Thrust Force on a Rocket is vr(-dm/dt)
- Velocity of a Rocket at any time is v=u-gt+v1ln(m0/m)

Topic - 7: Rotational Motion

- Torque $\tau = r \times F = d?^{?} / dt$
- Rotational Kinetic Energy $K=I\omega 2/2=L2/2I$
- Rotational Power $P=\tau \cdot ??$
- Equations of Motion are $\omega = \omega + \alpha t_0 \theta = \omega$ $0t + \alpha t/2$ and $\omega = \omega \theta + 2\alpha \theta^2$
- The *nth* angular displacement is $\theta n \theta n 1 = \omega 0 + \alpha (2n-1)/2$
- Moment of Inertia $I = \sum n_{i=1} m \pi 2n$ discrete case and $I = \int r^2 dm$
- Radius of Gyration is $k=\sqrt{I/M}$
- Parallel Axis Theorem I axis = $I_{CM} + Md2$
- Perpendicular Axis Theorem Iz=Ix+Iy
- Moment of Inertia of some common objects -
 - O Rod of mass M and length L along its center I=ML2/12
 - O Rod of mass M and length L along its corner I=ML2/3
 - O Rectangular Lamina of mass M, length L and width W along its width $I=ML^2/12$
 - O Rectangular Lamina of mass M, length L and width W along its length I=MW2/12
 - O Rectangular Lamina of mass M, length L and width W along its center I=M(L2+W2)/12
 - O Ring of radius R along a normal to the plane passing through the center I=MR2
 - O Disc of radius R along a normal to the plane passing through the center I=MR2/2
 - O Circular Hollow Disc of inner radius *r* and outer radius *R* along a normal to the plane passing through the center $I=M(r^2+R^2)/2$
 - \bigcirc Hollow Cylinder of radius *R* along its length passing through the center *I*=*MR*2
 - O Hollow Cylinder of length *L* and radius *R* along the normal to its length and passing through the center I=M(L2+6R2)/12
 - \bigcirc Solid Cylinder of radius *R* along its length *I=MR*2/2

- Solid Cylinder of length *L* and radius *R* along the normal to its length and passing through the center I=M(L2+3R2)/12
- \bigcirc Hollow Sphere of radius *R* along its center *I*=2*MR*2/3
- \bigcirc Solid Sphere of radius *R* along its center *I*=2*MR*2/5
- Total Kinetic Energy of Rolling Motion is $K = [mv \quad cM^{2+I\omega^2}]/2$
- Total Angular Momentum of Rolling Motion is $L=mvCMR+I\omega$
 - Pure Rolling without slipping on stationary surface -
 - $\bigcirc vCM = R\omega$ and $aCM = R\alpha$
 - \bigcirc Forward Slipping happens when *vCm*>*R* ω
 - \bigcirc Backward Slipping happens when *vCM*<*R* ω
 - Total Kinetic Energy is K=(1/2)mv $CM(1+k/R)^2$
- Formulas for Pure Rolling Motion in Inclined Plane with mass M, radius R and inclination θ
 - \bigcirc Acceleration $a=gR2sin\theta/(k2+R2)$
 - O Minimum Frictional Coefficient $\mu = k2tan\theta/(k2+R2)$
- Work Done by Torque is $W=\int \tau \cdot d\theta$

Topic - 8: Gravitation

- Newton's Law of Gravitation is $F = Gm \, m / R^{-2}$ where $G \approx 6.67 * 10 \, N \frac{h}{h} / kg^2$
- Gravitational Field is GM/R2
- Gravitational Field outside a Spherical Shell is $-GM/r^2$ where r > R
- Gravitational Field on the Surface of the Spherical Shell is $-GM/R^2$
- Gravitational Field inside the Spherical Shell is 0
- Gravitational Field outside a Solid Sphere is $-GM/r^2$ where r > R
- Gravitational Field inside a Solid Sphere is -GMr/R3 where r < R
- Acceleration due to gravity is g=GM/R2
- Acceleration due to gravity at height h above the surface is hg = g(1-2h/R) when h < << R
- Acceleration due to gravity at depth d from the surface is d = g(1 d/R)
- Acceleration due to gravity at latitude λ is $g_{\lambda} = g \omega^2 R c \sigma^2 s \lambda$
- Gravitational Potential due to a point mass is V = -GM/r
- Gravitational Potential inside a Spherical Shell is 0
- Gravitational Potential outside the Spherical Shell is V = -GM/r where r > R
- Gravitational Potential inside a Solid Sphere is $V = -GM(3R r^2)/2R^2$ 3 where r < R
- Potential of a thin ring on the axis at a distance r is $V = -GM/\sqrt{R+r^2}$
- Escape Velocity from a planet is $v = \sqrt{2GM/R}$
- Orbital Velocity of a satellite is $v = \sqrt{GM/r}$ where r > R
- Time Period of a satellite is $T = 2\pi * r\sqrt{r}/\sqrt{GM}$
- Potential Energy of a point mass at a distance from the center of object is U = -GMm/r
- Kinetic Energy of a satellite is K = GMm/2r
- Mechanical Energy of a satellite is E = -GMm/2r
- Kepler's 3rd Law of Planetary Motion is 2T = ka 3 where a is the length of semi-major axis

Topic- 9: Solid Mechanics

• Stress is the Ratio of Internal Restoring Force per unit Area of Cross-Section

• Strain is the Ratio of change in size of the object to its original size

2

- Hooke's Law within elastic limit is $Stress \propto Strain$
- Young's Modulus $Y=(F/A)/(\Delta L/L)$
- Increment in length due to its own weight $\Delta L = \rho g l/2Y$
- Bulk Modulus $\kappa = -\Delta P / (\Delta V / V)$
- Compressibility is the reciprocal of Bulk Modulus
- Modulus of Rigidity $\eta = (F/A)/\phi$
- Poisson's Ratio σ =Lateral Strain/Longitudinal Strain= –($\Delta D/D$)÷($\Delta L/L$)
- Work Done on a wire is $W=(1/2)*Stress*Strain*Volume=F\Delta L/2$

Topic - 10: Fluid Mechanics

- Mass Density is $\rho = Mass \div Volume$
- Specific Weight is $Weight \div Volume = \rho g$
- Relative Density is Density of Liquid÷Density of Pure Water at $4C^{O}$
- Density of a mixture with variable Volume is $\rho = \sum_{k=1}^{n} m_{k} \sum_{k=1}^{n} (m_{k} \rho)_{k}$
- Density of a mixture with variable Mass is $\rho = {}^{n}_{k} \Sigma V_{k} \rho \div {}^{n}_{k=} \Sigma V^{k}$
- Pressure P=Normal Force÷Area
- Difference of Pressure in depth h is $P = h\rho g$
- Gauge Pressure at depth h of a liquid when placed in an elevator is $\Delta P = h\rho(g \pm a)$
- Gauge Pressure between two points on same level at a distance of when the liquid is accelerated by $a i p = \rho l a$
- Rotating Cylinder along the length and passing through the center, th extra height is $h = (\omega r)^2/2g$
- Pascal's Law: $\mathbf{F} \div \mathbf{A} = \mathbf{F} \div^2 \mathbf{A}$
- Absolute Pressure=Atmospheric Pressure+Gauge Pressure
- Atmospheric Pressure is $P_{atm} = 101325 N/m^2$
- Buoyant Force is the Weight of Displaced Fluid, $BF = V \rho g$
- Equation of Continuity is $\mathcal{H} v = A \partial^2$
- Bernoulli's Theorem is $P + \rho v / 2 + \rho gh = Constant$
- Principle of Venturimeter is $v=A\sqrt{2gh}/(A_{1}^{2}-A_{2}^{2})$
- Velocity of Efflux is $v = \sqrt{2gh}$
- Horizontal Range of Efflux is $R = 2\sqrt{h(H-h)}$
- Surface Tension is Force per unit Length, T = F/l
- Surface Energy is $S=T\Delta A$
- Excess Pressure for water droplet is 2T/R
- Excess Pressure for soap bubble is 4T/R
- Height of Capillary Rise $h = 2T \cos \theta / \rho rg$
- Height of Capillary Rise after correction $h=[2T\cos\theta/\rho rg]-(r/3)$
- Newton's Law of Viscosity is $F = \eta A(dv/dx)$
- Stoke's Law is $F = 6\pi\eta rv$
- Poiseuille's Formula is $Q=\pi pr/(^{4}8\eta L)$
- Terminal Velocity is $v_T = 2r (p^2 \sigma)g/9\eta$
- Reynold's Number is $e R = \rho v d / \eta$

Topic - 11: Thermal Physics and Thermodynamics

• Linear Expansion $l = l0(1 + \alpha \Delta T)$ • Areal Expansion $A=A0(1+\beta\Delta T)$ • Volume Expansion $V=V0(1+\gamma\Delta T)$ • Fractional Change in Time Period of a Simple Pendulum is $\alpha \Delta T/2$ • Thermal Strain $\Lambda l/l = \alpha \Lambda T$ • Thermal Stress $F/A = Y \alpha \Lambda T$ • Coefficient of Volume Expansion in Gases is $\gamma = 1/T$ • Heat Capacity of a body is $H=O/\Delta T$ • Specifc Heat Capacity is $s=Q/m\Delta T$ • Molar Heat Capacity is $Q/n\Delta T$ Latent Heat L=O/m• Rate of Heat Flow is $\frac{dQ}{dt} = -KA \frac{dT}{dr}$ • Thermal Resistance RT = l/KA $K = {}^{n} \sum_{i} l_{i} \div {}^{n} \sum_{1} l_{i} K^{i}$ Coefficient of Thermal Conduction in Series Connection is • Coefficient of Thermal Conduction in Parallel Connection is $K = \sum_{i=1}^{n} KiA_i \div \sum_{i=1}^{n} A^i$ • Stefan-Boltzmann's Law says $I = e\sigma T$ 4 where is the Intensity and $e \in [0,1]$ Prevost's Theory of Heat Enrgy Exchange is $I_{net} = e\sigma(T - T)$ (0^4) Newton's law of Cooling is $-dT/dt \propto (T-T) or_0 T = T + (T-T_0) exp(-kt)_0$ $\frac{T_1 - T^2}{t} = k \left[\frac{T_1 - T_2}{2} - T_0 \right]$ • Newton's Law of Cooling for small temerature difference is • Wien's Displacement Law λ max=b/T where b $\approx 2.89 \times 10$ $^{-3} mK$ • Solar Constant $S = (R ST^2 r)^2$ • Mayer's Formula CP=Cv+R• Average Distance between two consecutive collisions is λ $=\frac{1}{\sqrt{2}\pi d^2 n}$ Mixture of Non-Reacting Gases nkWk÷∑k[№]=1 nk O Molecular Weight *M* $mix = \sum k^{\underline{N}} 1$ O Specific Heat Capacity at constant Volume is $s = \sum N_{k=1} nk(sV)k \div \sum_{k=1}^{N} n_k$ Specific Heat Capacity at constant Pressure is $s_V = \sum_{k=1}^{N-1} nk(sP)k \div \sum_{k=1}^{N} n_k$ $\frac{n}{v-1} = \frac{n1}{v^2-1} + \frac{n2}{v^3-1} + \frac{n3}{v} + \dots + \frac{n_k}{vk-1}$ • Molar Heat Capacity for any polytropic projection C = C• First Law of Thermodynamics is Q supplied=Wby system+ ΔU • Work Done by the System is $W = \int 2 \frac{V}{V1}$ P dV For Adiabatic Process $PV\gamma$ =Constant and W=(P1V1-P2V2)/(γ -1) • For Isothermal Process PV=Constant and W=nRTln(V2/V1)For Isobaric Prcess $W=nR\Delta T$ Efficiency of a Carnot Cycle is $\eta = 1 - T_{\frac{1}{T_2}}$ • Coefficient of Performance is $\beta = \frac{T_2}{T \pi T_2}$

• Isothrmal Bulk Modulus of Gases is $\kappa = -V \stackrel{\partial P}{\partial V}$

• Adiabatic Bulk Modulus of Gases is $\kappa = -\gamma V \quad \frac{\partial P}{\partial V}$

Topic - 12: Oscillations and Waves

• Angular Frequency $\frac{k}{m} = \sqrt{\frac{k}{m}}$ • Equation for Linear SHM is $\frac{d^2x}{dt^2} + \omega x^2 = 0$ • Equation for Angular SHM is $\frac{d^2 \theta}{dt^2} + \omega \theta^2 = 0$ • Displacement in SHM is $x=Asin(\omega t+\phi)$ • Velocity of a particle in SHM is $v=A\omega cos(\omega t+\phi)=\omega\sqrt{A2-x2}$ • Acceleration of a particle in SHM is $a = -A\omega 2sin(\omega t + \phi) = -\omega 2x$ • Kinetic Energy of a particle in SHM is $K = kA2cos2(\omega t + \phi)/2$ $U=kA2sin2(\omega t+\phi)$ • Potential Energy of a particle in SHM is • Total Energy of a particle in SHM is E=K+U=(1/2)kA2• Time Period in a Spring Block System is $T=2\pi\sqrt{\frac{m}{r}}$ Time Period in a Combined Spring Block System is $T = 2\pi\sqrt{\frac{\mu}{r}}$ where μ is the reduced mass Time Period in a Series combination of springs is $T = 2\pi\sqrt{\frac{m}{22}}$ where ?? is the effective Spring Constant, that is $\frac{1}{22} = \frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_2} + \dots + \frac{1}{k_n}$ • Time Period in a Series combination of springs is $T = 2\pi\sqrt{\frac{m}{27}}$ where ?? is the effective Spring Constant, that is ??=k1+k2+k3+...+kn• Time Period of a Simple Pendulum is $T=2\pi\sqrt{\frac{l}{c}}$ Time Period of a Physics Pendulum is $T = 2\pi \sqrt{\frac{\lambda l}{a}}$ where $\lambda = \frac{Moment \ of \ Inertia}{ml^2}$ Time Perod of a Conical Penduum is $T = 2\pi\sqrt{\frac{l\cos\theta}{a}}$ Time Period of a Tortional Pendulum is $T=2\pi\sqrt{\frac{l}{r}}$

- Time Period for an SHM in a U-Tube Manometer is $T=2\pi\sqrt{w_{h}^{h}ere}h$ is the height
- Time Period of a particle in SHM in a tunnel inside te Earth is $T=2\pi\sqrt{-\frac{R}{2}}$
- Equation of a Damped Oscillation is $\frac{d2x}{dt^2} + \omega x^2 + \frac{b}{m}v = 0$
- Displacement due to Damped Oscillation is $x=Aexp(-bt/2m)sin(??t+\phi)$
- Angular Velocity in Damped Oscillation is $?? = \frac{\sqrt{k}}{m} \frac{b^2}{4m}$
- Total Energy in Damped Oscillation is E=(1/2)kA2exp(-bt/m)
- Equation of any wave in 2-D is $\frac{\partial^2 y}{\partial t^2} = v \frac{\partial^2 y}{\partial t^2}$
- Equation of a Plane Progressive Wve in 2-D is $y=Asin(\omega t-kx)$ where $k=2\pi/\lambda$
- Velocity of a wave is $v=\omega/k$
- Velocity of the particle is $vP = \frac{\partial v}{\partial t} = A\omega \cos(\omega t kx)$

$$\bullet vP = -v(dy/dx)$$

- Particle Acceleration is $\partial 2y/\partial t^2 = -A\omega 2sin(\omega t kx)$
- Relation between Phase Difference, Path Difference and Time Difference is $\frac{\Delta\phi}{2\pi} = \frac{\Delta\lambda}{2} = \frac{\Delta T}{T}$
- Kinetic Energy per unit volume is $(1/2)\rho v^2$ $P=(1/2)\rho\omega Ac\partial^2(\omega t - kx)$
- Potential Energy per unit volume is $(1/2)\rho\omega 2A2cos2(\omega t kx)$
- Total Energy per unit volume is $\rho\omega 2A2cos2(\omega t kx)$
- Power of a wave is $P = (1/2) \rho \omega 2A 2 v S$ where S is the Area of Cross-Section
- Intensity of a wave is $(1/2)\rho\omega 2A2v$
- Speed of a transverse wave on string $v = \sqrt{T/\mu}$
- Interference of two waves -

O For amplitude $A=\sqrt{A2}$ 1+A2+2A1A2cos φ

- \bigcirc For intensity $I=I1+I2+2\sqrt{I1I2\cos\varphi}$
- \bigcirc For constructive Interference, $\Delta \lambda = n\lambda$ or $\Delta \varphi = 2n\pi$ and $max I = (\sqrt{I} + \sqrt{I_1})$
- \bigcirc For Destructive Interference, $\Delta \varphi = (2n+1)\pi$ and *I* $_{min} = (\sqrt{I} - \sqrt{I}) \frac{1}{2}^2$

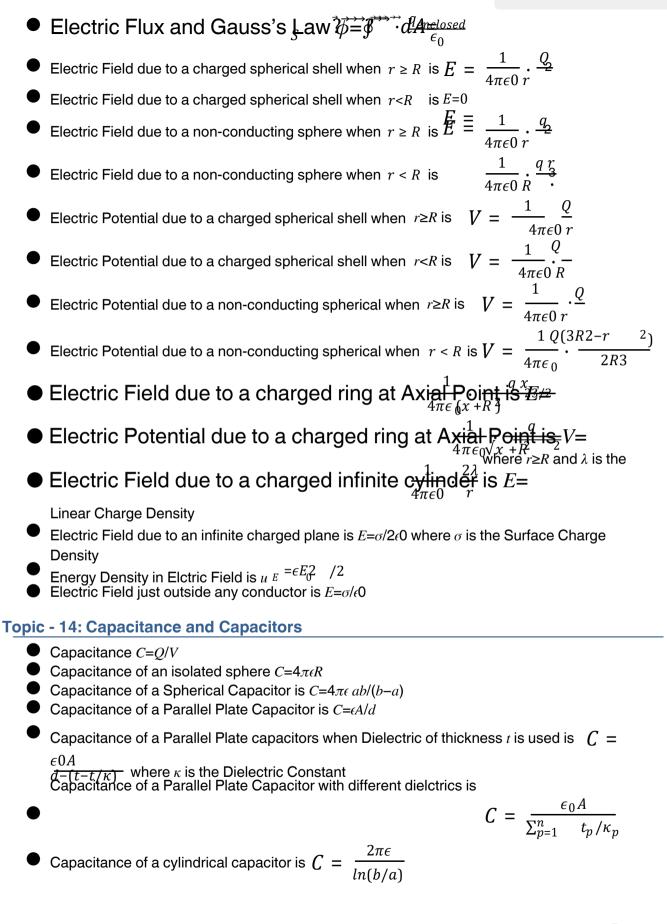
O Degree of Hearing is $(\frac{Imax / Imin) - 1}{(Imax / Imin) + 1} \stackrel{(1)}{A} \stackrel{(1)}{W} \stackrel{(1)}{H} \stackrel{(1)}{H} \stackrel{(2)}{H} \stackrel{(2)}{H}$

BAMPIITUde of **Reflected** wave is A

$$t = \frac{2\nu^2}{\nu_2 \nu_1} i$$

- *nth* harmonic in stationary string wave is f=nv/2l (fixed at both ends)
- (2k-1)th harmonic in stationary wave is f=(2k-1)v/4l (fixed at one end)
- Velocity of Sound Wave with elasticity *E* is $v=\sqrt{E/\rho}$
- Newton's Formula for Sound Waves $v=\sqrt{P/\rho}$

- Laplace Correction to Newton's Fomula $v=\sqrt{\gamma P/\rho}$
- Equation of a Pressure Wave is $p=ABkcos(\omega t-kx)$
- Frequency in a Closed End Organ Pipe is f=(2k-1)v/4l for (2k-1) th have


th harmonic

- Error Correction in Closed End Organ Pipe is 1 f=v/4(l+0.6R)
- Frequency of an Open End organ Pipe is f=nv/2l for *nth* harmonic
- Error Correction in Open End Organ Pipe is 1 f=v/2(l+1.2R)
- Wavelength of a Resonating Tube is $\lambda = 2(l l_2)$
- End Correction in a Resonating Tube is e=(l-3l1)/2
- Loudness of Sound (in dB) is $\beta = 10 \log (I/I)^0$

Doppler's Effect
$$f = \frac{v + v_0}{v - v_s} \times f$$

Topic - 13: Electrostatics

• Co ulomb's Law $F = \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1 q_2}{r}$ • Principle of Supreposition $F = \vec{F} + \vec{F} = 2 + F^{3} + \vec{F} + \vec{F}$ ● Electric Field ???? =? /? Ele ctric Field due to a point charge is ? $\stackrel{?}{\cong} \frac{1}{4\pi\epsilon r^2} \stackrel{q}{=} ??$ • Equilibrium of charges for an Equilateral Triangle is $q = -q/\sqrt{3}$ • Equilbrium of charges for a Square is $=-q(2\sqrt{2+1})/4$ • Equilbrium of two charges hanging from a point through thread $T\cos\theta = mg$ and $T\sin\theta = Fe$ • Electric Potential $V = \frac{a}{-1}$?'? $\cdot dr$ or ?' = -?'?' V • Electric Potential for a point charge is V=• Electric Potential Energy of two $c_{\frac{har}{4\pi\epsilon_0}}^{\frac{1}{2}} e^{\frac{2}{3}} u =$ • Electric Dipole Moment $p=q\times 2a$ where 2a is the total length of the dipole • Torque on an electric dipole in a uniform electric field is $\tau = p \times ??$ • Potential Energy stored in a dipole in a uniform electric field is $U = -p \cdot ??$ Electric Field at Axial Point is $? \stackrel{\rightarrow}{?} \stackrel{=}{=} \frac{1}{4\pi\epsilon_0} \cdot \frac{2p_0}{r}$ • Electric Field at Equitorial Point is $? ? = \frac{1}{4\pi\epsilon_0} = \frac{-p}{r}$ Electric Field at any point due to an electric dipole is $E = \frac{1 p \sqrt{1+3cos2\theta}}{4\pi\epsilon_0} \cdot \frac{r_3}{r_3}$ Electric Potential at any point due to an electric dipole is $V = \frac{1 p cos \theta}{4\pi\epsilon_0} \cdot \frac{r^2}{r^2}$ Total Potential Energy due to many charges is $U = Uself + \sum_{i \neq j=1}^{n} \frac{1}{4\pi\epsilon_0} \cdot \frac{q_i q_j}{r}$

• Capacitance of capacitors $\frac{1}{C_1}$ s $\frac{1}{C_2}$ = $\frac{1}{C_2}$...+ • Capacitance of a capacitors in parallel is C=C1+C2+C3+...+CnEnergy stored in charged capacitor is U=CV2/2=QV/2=Q2/2C Common Potential du to sharing of charges between two capacitors is Expression for the formula for the second structure for the second str **Topic - 15: Current Electricity** • Charge $I = O/t \Phi r = dg/dt$ Charge Density J=I/A or $I=\int J \cdot dA$ or $J=\sigma?^{?}?^{?}$ • Drift Velocity $d = \mu E$ **D**rift Current $d = neAv^{-d}$ Resistivity $\rho = RA/l$ • Dependence of Resistance on Temperature $R=R0(1+\alpha\theta)$ ● Ohm's Law V=IR Kirchhoff's Current Law Σ Ioutwards $I_{inwards} = \sum$ Kirchhoff's Voltage Law $\sum Voltage = 0$ Resistance in Series $R = R_1 + R_2 + R_3 + \ldots + R_n$ • Resistance in Parallel $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$ • EMF of a cell with its internal resistance is $VAB = \frac{PE}{R+r}$ • Cells in Series Connect $\frac{i^{nE}}{i^{nE}}I =$ • Cells in Parallel Connection I=• Cells in Series and Parallel Conrection $I = M^{\frac{m}{2}}$ • Principle of Wheatstone Bridge is $- = \frac{R}{S}$ • Meter Bridge Princip $e^{\frac{100-l}{10}} \cdot R$ •Po tentiometer Principle $\frac{E1}{E_2} = l_{t_2}^1$ • Shunt Resistance for Ammeter is $S = \frac{IgRg}{I-Ia}$ • Shunt Resistance for Voltmeter is $S = \frac{V}{Ia} - G$ Electrical Power is $P = VI = V / R = I R^{2}$ Joule's Law of Heating *W=VIt=IRt dr W=*∫ $I^2 R dt$

$$V = \frac{\sum_{k=1}^{n} C_k V_k}{\sum_{k=1}^{n} C_k}$$

• Power for Series Combination $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} + \frac{1}{p_3}$

• Power for Parallel Connection $P=P+P_2+P+...+P_3$

Topic - 16: Magnetic Effects of Current and Magnetism

- Biot-Savart Law $d? \stackrel{?}{?} \stackrel{=}{=} \frac{\mu}{4\pi} \cdot \frac{I(dl \times ??)}{r^2}$ or $dB = \frac{\mu}{4\pi} \cdot \frac{I \cdot dl \cdot \sin \theta}{r^2}$ • $\mu 0 = 4\pi \times 10^{-7} H/m$
- For moving charge $d?^{\rightarrow}?^{\rightarrow} \frac{-\mu}{4\pi} \cdot \frac{q(?^{??} \times ??)}{r^2}$
- Magnetic Field due to current carrying straight conductor is $B = \frac{\mu 0I}{4\pi R} (sin\alpha + sin\alpha 2)$

• Magnetic Field due to current carrying infinite wire is $B = \frac{\mu 0 I}{2\pi R}$

• Magnetic Field due to circular wire carrying current (at center) is $B = \frac{\mu 0 I}{2R}$

- Magnetic Field due to circular wire carrying current (at axis) is $B = \frac{\mu_0 IR2}{2(x^2+R^2)^3/2}$
- Magnetic Field due to circular arc at its $\frac{\mu_0}{4\pi}$ on B_R
- Magnetic Field due to infinite solid $cy_{m}^{\mu}der$ is B = r < R
- Magnetic Induction due to Solenoid is $B=\mu 0nI$ where $n=N/2\pi R$
- Magnetic Field due to a current carrying sheet is $B=\mu 0I/2$
- Ampere's Law $\oint ? \cdot ? \cdot dl = \mu d_{enclosed}$
- Lorentz Force $F = q?^{\uparrow}?^{\uparrow} + q(v \times ?^{\uparrow}?^{\uparrow})$
- When charged particle moves undeviated then v=E/B
- Magnetic Force on a moving charge is $F = q(v \times \vec{??})$ or $F = q B v sin\theta$
- Magnetic Force due to current carrying wire is $F = I(l \times ??)$ or $F = I B lsin\theta$

• Force per unit length of parallel wire carryin $\frac{\mu_0}{2\pi} current d$ is f=

• Torque on a magnetic dipole is $\tau = ?? \times ??$ where ?? is the magnetic moment of dipole

• For a moving coil galvanometer $I = k\theta / NAB$

• For rec on a magnetic dipole in a non-uniform magnetic field is
$$|F| = |m| = \frac{\partial B}{\partial r}$$

• Current produced by a rotating charge is $I=q\omega/2\pi$

- Magnetic Moment due to a rotting charge is $m=q\omega R^2/2$
- Magnetic Field at Axial Position of a magnetic dipole is $? ? \frac{\mu_0}{4\pi} \cdot \frac{2?}{r}$
- Magnetic Field at Equatorial Point of a magnetic dipole is $? ? \frac{\mu_0}{r} \cdot \frac{-??}{r}$

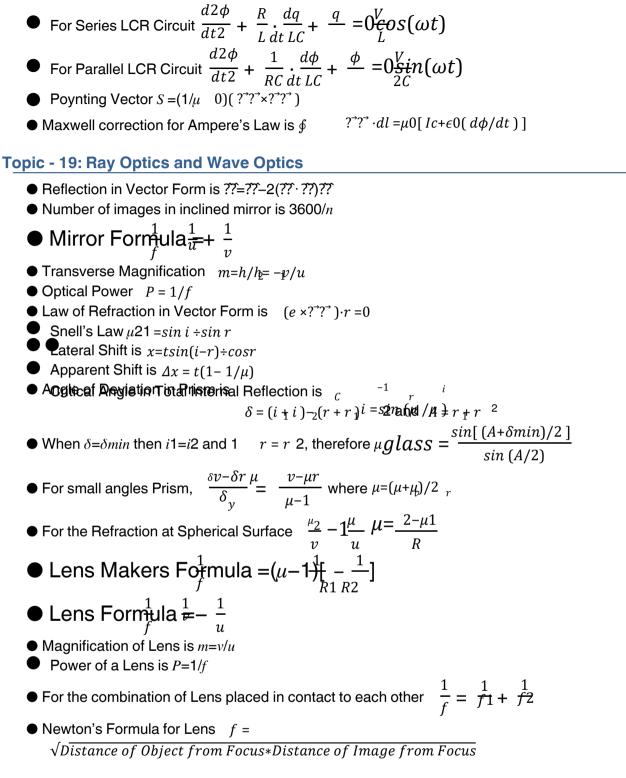
~ ~

- Magnetic Field at any point due to a magnetic dipole is $B = \frac{\mu_0}{4\pi} \cdot \frac{m\sqrt{1+3\cos 2\theta}}{r^3}$
- •Magnetic Potential due to magnetic dipole is $V = \frac{\mu_0}{4\pi} \cdot \frac{m \cos\theta}{r^2}$

- Magnetic Susceptibility $\chi = \mu 1$

• Curie-Weiss Law says $\chi m \propto \frac{1}{T-T_c}$ for Ferromagnetic materials • $\frac{F(magnetic)}{F(electric)} = \frac{v^2}{c^2}$

Topic - 17: Electromagnetic Induction


- Magnetic Flux $\phi = ?? \cdot A$ for uniform Magnetic Field
- Faraday's Law of Electromagnetic Induction $EMF \propto d\phi/dt$
- Lenz's Law of Electromagnetic Induction $EMF = -d\phi/dt$
- EMF induced in a straight conductor in uniform Magnetic Field is $EMF=Blvsin\theta$
- EMF induced in a rotating rod is $EMF = B\omega L^{\frac{3}{2}}$
- Self Inductance $L = \phi/I$
- Self induced EMF is EMF = -L*dI/dt
- Series combination of inductors $L = L_1 + L_2 L_3 + ... + L^n$
- Parallel combination of inductors $1/L=1/L+1/L+1/L_2+...+1/L_3n$
- For Transformers $EMF \propto Voltage$
- Efficiency of a Transformer is η =Output Power÷Input Power
- Magnetic Field due to Solenoid is $B = \mu nI$
- Self Inductance of a Solenoid is $L = \mu^{20} n A L$
- Growth of Current in L-R Circuit $I=(EMF \div R)[1-exp(-Rt/L)]$
- Current Decay I=I0 exp(-Rt/L)

Topic - 18: Alternating Current and EM Waves

•
$$I_{avg} = 0 \frac{\int_{T}^{T} I dt}{\int_{0}^{T} dt}$$

• IRMS=
$$\sqrt{\frac{\int_0^T I2_{dt}dt}{\int_0^T}}$$

- If $V=V0sin(\omega t)$ then $Vavg=2V0/\pi$ and $VRMS=V0/\sqrt{2}$
- If $I=I0sin(\omega t)$ then $Iavg=2I0/\pi$ and $IRMS=I0/\sqrt{2}$
- Impedance of an LCR Circuit is $Z=\sqrt{R2}+(X-X)^2$
- Power Factor= $cos\phi=R/Z$
- Energy in an LC Circuit is E=LI2/2

Topic - 20: Modern Physics

- Energy of a Photon is E=hv
- Linear Momentum of a Photon is $p = h/\lambda$
- Intensity of Light is I=P/A
- Pressure on perfectly reflecting surface is P=2I/c
- Pressure on perfectly absorbing surface is P=I/c

- Constein's Photoelectric Equation is hv = K + W 0
- Stopping Potential $V = K_{mak} e$
- De Broglie wavelength $\lambda = h/mv$
- Manantum of a national is $K = p^2 / 2m$

 $\sqrt{2mK}$

- For Bohr Atomic Model, $mvr = nh/2\pi$
- Radius of *nth* Circular Orbit is $r = [0.529 n/2^2] A^2$
- Energy of an electron in the orbit is $E = (-13.6 Z^2/n^2) eV$ and Binding Energy is B = -E
- The formula for Wave Number is $\lambda = R[n^{-21} n 22]$ where *R* is the Rydberg's constant
- For X-Rays $\lambda min \approx [12400/V]A$
- Moseley's Law for Characteristic Spectrum $\sqrt{\nu}=a(Z-b)$
- Bragg's Law for Diffraction $n\lambda = 2d \sin\theta$
- Mass Defect in nuclear Fusion is $\Delta m = [Mass of Reactants Mass of Products]$
- Law of Radioactive Decay $N = Ne_{xp}(-kt)$ where k is the Decay Constant
- Half-Life of a Radioactive material t = ln 2/k
- Number of Nuclei left after n Half-Life is $N = N \not o 2^n$
- Mass-Energy Equivalence $E=mc^{-2}$
- Radius of a Nucleus is $\Re = (1.3*10^{-153})*A$
- Radioactive Disintegration with Succession $N = (\alpha/k)(1 exp(-kt))$

Topic - 21: Semiconductors and Communication System

- Number of Electrons reaching from Valence Band to Conduction Band is $n = AT3/2exp(-\Delta E/2kT)$
- Mass-Action Law is n2=ne*nh
- Conductivity $\sigma = ne(\mu e + \mu h)$
- Form Factor *f=IRMS*+*IDC*
- Form Factor for Half Wave Rectifier is $\pi/2$
- Form Factor for Full Wave Rectifier is $\pi/2\sqrt{2}$ -
- Ripple Factor is $r=IAC \div IDC$
- Ripple Factor for Half Wave Rectifier is $r \approx 1.21$
- Ripple Factor for Half Wave Rectifier is r≈0.48
- Rectifier Efficiency is *n*=*PDC*÷*PAC*