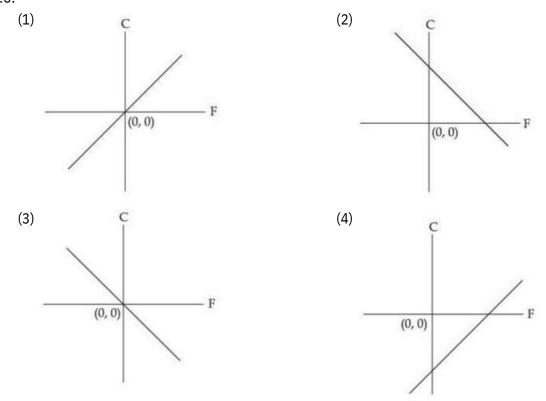
Q1. Group A consists of 7 boys and 3 girls, while group B consists of 6 boys and 5 girls. The number of ways, 4 boys and 4 girls can be invited for a picnic if 5 of them must be from group *A* and the remaining 3 from group *B*, is equal to :

10 0000000			
(1) 8750 (3) 8925	(2)		
	9100		
	(4)		
Q2. $x+2y-3z=2$			
	$^{8575}_{ m infinitely}$ many solutions, then $\lambda + \mu$ is equal to :		
14 <i>x</i> +3 <i>y</i> +µ <i>z</i> =33			
(1) 13	(2) 10		
(3) 12	(4) 11		
Let $A = \{x \in (0,\pi) - \{\pi \\ 2\}: \log(2/\pi) \sin x + \log(2/\pi) + \log(2/\pi$	$2/\pi$ cosx =2} and		
B={ $x \ge 0: \forall x(\forall x-4)-3 \forall x-2 +6=0$ }. Then n(AU			
	•		
(1) 4	(2) 8		
(3) 6	(4) 2		
The area of the region enclosed by the curves <i>y</i> =e <i>x</i> ,	/= ex-1 and y-axis is:		
(1) 1-loge2 (3) 1+loge2	(2) loge2		
The equation of the chord, of the ellipse $(1) 48x+25y = 169$	(4) 2loge2-1		
(3) $25x+101y = 176$ x2 y ²			
Let the points (11 25+16=1,	whose mid-point is (3,1) is : (2) 5x+16y = 31		
	(4) $4x + 122y = 134$		
2, α) lie on or inside the triangle with sides $x+y=11$, $x+2y=16$ and $2x+3y=29$. Then			
the product of the smallest and the largest values of	α is equal to :		
(1) 44	(2) 22		
(3) 33	(4) 55		
(3) 33	(4) 55		
Q7. Let $f:(0,\infty)$ → R be a function which is differentiable at all points of its domain and satisfies the condition $x2f'(x)=2xf(x)+3$, with $f(1)=4$. Then $2f(2)$ is equal to :			
(1) 39	(2) 19		
(3) 29	(4) 23		
Q8. If $7=5+1$ Q8. $7(5+\alpha)+72(5+2\alpha)+73(5+3\alpha)+$	∞ , then the value of $lpha$ is :		
(1) $\frac{6}{7}$	(2)		
(3) $\frac{1}{7}$	(2) (4) 1		
	m and n respectively be the numbers of the points, where the		
function $f(x)=[x]+ x-2 ,-2, is not continuous and$	d not differentiable. Then m+n is equal to :		
(1) 6	(1) 0		

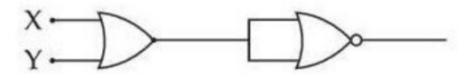
- (1) 6 (2) 8 (3) 9 (4) 7
- Q10. Let A = [aij] be a square matrix of order 2 with entries either 0 or 1. Let *E* be the event that *A* is an invertible matrix. Then the probability P(E) is :

- (1) 7 (2) 9
- (3) 8


Q20. If $\alpha > \beta > \gamma > 0$, then the expression $\cot -1\{\beta + (1+\beta 2)\} + \cot -1\{\gamma + (-)\beta \gamma + (-)\beta \gamma + \cot -1\{\alpha + (1+\alpha 2)\} + \cot (\gamma - \alpha)\}$ is equal to :

(4) 6

- (1) π (2) 0 (3) $\mathcal{P} - (\alpha + \beta + \gamma)$ (4) 3π
- Q21. Let P be the image of the point Q(7,-2,5) in the line L:x-1 $_2 = \frac{y+1}{3} = z 4$ and R(5,p,q) be a point on L. Then the square of the area of $\triangle PQR$ is _____.
- Q22. If $\int 2 + \beta x + 9 \, dx = x \sqrt{x^2 + x + 1} + \alpha \sqrt{x^2 + x + 1} + \beta \log e_x + \frac{1}{2} \sqrt{2} + \frac{1}{x} x + 1 + C$, where *C* is the constant of integration, then $\alpha + 2\beta$ is equal to _____.

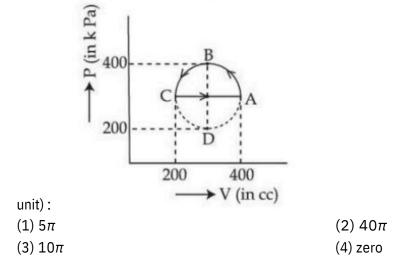

Let y=y(x) be the solution of the differential equation $2\cos x \frac{dy}{dx} = \sin 2x - 4y \sin x, x \in (0, \pi 2)$ If $y(\hat{\pi}) = 0$, then $y'(\hat{\pi}) + y(\hat{\pi})$ is equal to _____.

- Q24. Number of functions $f:\{1,2,...,100\}\rightarrow\{0,1\}$, that assign 1 to exactly one of the positive integers less than or equal to 98, is equal to _____.
- Q25. Let $H_1: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ and $H:-x^2 + \frac{y^2}{A^2} = 1$ be two hyperbolas having length of latus rectums $15\sqrt{2}$ and $12\sqrt{5}$ respectively. Let their ecentricities be $e_{=1}$ $\sqrt{5}$ 2 and e^2 respectively. If the product of the lengths of their transverse axes is 100 $\sqrt{10}$, then 25e22 is equal to _____.
- Q26. Which of the following figure represents the relation between Celsius and Fahrenheit temperatures ?

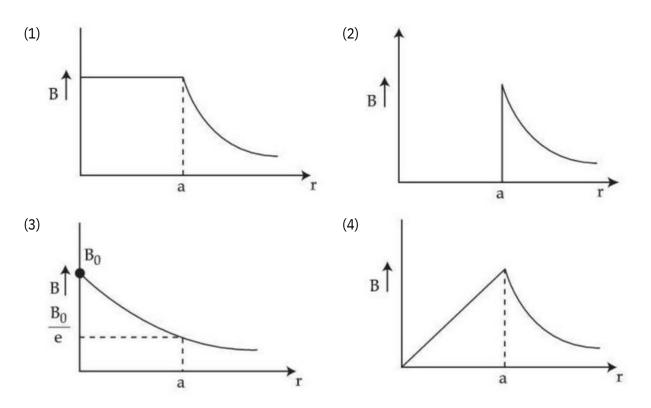
2 025 (24 Jan Shift 2) JEE Main 2025 January

- Q27. The position vector of a moving body at any instant of time is given as $r \rightarrow = {}^{(t_{f} + c_{f})} \oplus The magnitude and direction of velocity at$ *t*=2 s is,
 - (1)5 $\sqrt{15}$ m/s, making an angle of tan-14 with ve(2)5 $\sqrt{15}$ m/s, making an angle oftan⁻¹ 4 with + veY axisX axis
 - (3)5 $\sqrt{17}$ m/s, making an angle of tan-14 with + ve(4)5 $\sqrt{17}$ m/s, making an angle oftan⁻¹ 4 with veX axisY axis
- Q28. The output of the circuit is low (zero) for :

(A) X=0,Y=0 (B) X=0,Y=1 (C) X=1,Y=0 (D) X=1,Y=1 Choose the correct answer from the options given below : (1)(B), (C) and (D) only (3)(A), (C) and (D) only


(2)(A), (B) and (C) only (4)

(A), (B) and (D) only


Q29. Young's double slit inteference apparatus is immersed in a liquid of refractive index 1.44. It has slit separation of 1.5 mm . The slits are illuminated by a parallel beam of light whose wavelength in air is 690 nm . The fringe-width on a screen placed behind the plane of slits at a distance of 0.72 m , will be :

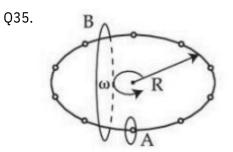
(1)0.23 mm	(2)0.33 mm
(3)0.63 mm	(4)0.46 mm

Q30. The magnitude of heat exchanged by a system for the given cyclic process ABCA (as shown in figure) is (in SI

Q31. A long straight wire of a circular cross-section with radius '*a* ' carries a steady current *I*. The current I is uniformly distributed across this cross-section. The plot of magnitude of magnetic field B with distance *r* from the centre of the wire is given by

Q32. In photoelectric effect, the stopping potential (V0)v/s frequency (ν) curve is plotted. (h is the Planck's constant and ϕ 0 is work function of metal) (A) V0v/s ν is linear. (B) The slope of V0v/s ν curve = $\frac{\phi}{h}$ (C) h constant is related to the slope of V0v/s ν line. (D) The value of electric charge of electron is not required to determine h using the V0v/s ν curve. (E) The work function can be estimated without knowing the value of h. Choose the correct answer from the options given below :

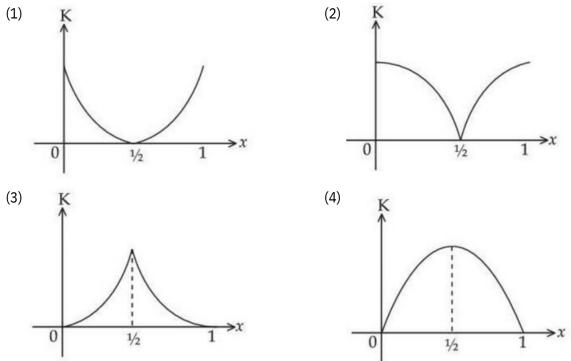
(1)(C) and (D) only	(2)(A), (C) and (E) only
(3)(A), (B) and (C) only	(4)(D) and (E) only


Q33. A solid sphere and a hollow sphere of the same mass and of same radius are rolled on an inclined plane. Let the time taken to reach the bottom by the solid sphere and the hollow sphere be *t*1 and *t*2, respectively, then

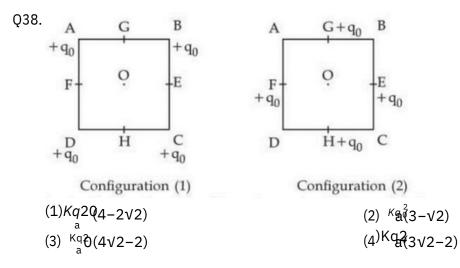
(1) t1 > t2	(2) t1 = t2
(3) <i>t</i> 1 < <i>t</i> 2	(4) t1 = 2t2

Q34. A small uncharged conducting sphere is placed in contact with an identical sphere but having 4×10-8C charge and then removed to a distance such that the force of repulsion between them is 9×10-3 N. The distance between them is (Take 1 as $4\pi\epsilon o$ 9×10ihSI units)

(1)3 cm	(2)2 cm
(3)4 cm	(4)1 cm


2 025 (24 Jan Shift 2) JEE Main 2025 January

N equally spaced charges each of value q, are placed on a circle of radius R. The circle rotates about its axis with an angular velocity ω as shown in the figure. A bigger Amperian loop B encloses the whole circle where as a smaller Amperian loop A encloses a small segment. The difference between enclosed currents, *IA–IB*, for the given Amperian loops is


(1)2 $\eta_N q \omega$	(2) $\frac{N2}{2\pi}$ q ω
(3) $\underset{\pi}{\mathrm{Nq}}\omega$	$(4) \underset{2\pi}{N} g$

Q36. A particle oscillates along the *x*-axis according to the law, x(t)=x Osin(t 2) where x0=1 m. The kinetic energy (K) of the particle as a function of x is correctly represented by the graph

Q37. A photograph of a landscape is captured by a drone camera at a height of 18 km . The size of the camera film is 2 cm×2 cm and the area of the landscape photographed is 400 km2. The focal length of the lens in the drone camera is : (1)1.8 cm (3)2.8 cm

(2)0.9 cm (4)2.5 cm

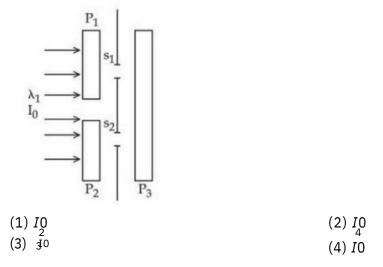
Q39. Arrange the following in the ascending order of wavelength (λ) : (A) Microwaves (λ1) (B) Ultraviolet rays (λ2) (C) Infrared rays (λ3) (D) X-rays (λ4) Choose the most appropriate answer from the options given below :

(1) $\lambda 4 < \lambda 3 < \lambda 2 < \lambda 1$	(2) $\lambda 3 < \lambda 4 < \lambda 2 < \lambda 1$
(3) $\lambda 4 < \lambda 3 < \lambda 1 < \lambda 2$	(4) $\lambda 4 < \lambda 2 < \lambda 3 < \lambda 1$

Q40. The energy E and momentum p of a moving body of mass m are related by some equation. Given that c represents the speed of light, identify the correct equation

(1) E2 = pc2 + m2c2	(2) E2 = p2c2 + m2c2
(3) E2 = pc2 + m2c4	(4) E2 = p2c2 + m2c4

Q41. The temperature of a body in air falls from 40°C to 24°C in 4 minutes. The temperature of the air is 16°C. The temperature of the body in the next 4 minutes will be:


(1) ¹ 3 ⁴ ق	(2)3 503	°e
(3) 238 °	563	0

A solid sphere is rolling without slipping on a horizontal plane. The ratio of the linear kinetic energy of the centre of mass of the sphere and rotational kinetic energy is :

(1) 3	(2) 4
4	$(4)^{3}_{2}$
$(3)_{2}^{5}$	(4) 2
$(3)_{2}$	5

Q43. In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of *P*1 and *P*2 are orthogonal to each other. The polarizer *P*3 covers both the slits with its transmission axis at 45° to those of *P*1 and *P*2. An unpolarized light of wavelength λ and intensity *I*0 is incident on *P*1 and *P*2. The

intensity at a point after P3 where the path difference between the light waves from \mathfrak{A} and \mathfrak{s}_2 is $\frac{\lambda}{3}$, is

Q44. Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R). Assertion (A) : In an insulated container, a gas is adiabatically shrunk to half of its initial volume. The temperature of the gas decreases. Reason (R): Free expansion of an ideal gas is an irreversible and an adiabatic process. In the light of the above statements, choose the correct answer from the options given below :

(1)Both (A) and (R) are true but (R) is NOT the correct explanation of (A)
(3)(A) is true but (R) is false
(4)Both (A) and (R) are true and (R) is the correct

explanation of (A)

Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A) : A electron in a certain region of uniform magnetic field is moving with constant velocity in a straight line path. Reason (R): The magnetic field in that region is along the direction of velocity of the electron. In the light of the above statements, choose the correct answer from the options given below :
(1)(A) is true but (R) is false
(2)Both (A) and (R) are true but (R) is NOT the correct explanation of (A)

- (3)Both (A) and (R) are true and (R) is the correct(4)(A) is false but (R) is true explanation of (A)
- Q46. The ratio of the power of a light source *S* to that the light source *S*2 is 2.*S*1 is emitting 2×1015 photons per second at 600 nm . If the wavelength of the source *S*2 is 300 nm , then the number of photons per second emitted by *S* is ×1014

2 025 (24 Jan Shift 2) JEE Main 2025 January

A string of length *L* is fixed at one end and carries a mass of *M* at the other end. The mass makes (3) $_{\pi}$ rotations per second about the vertical axis passing through end of the string as shown. The tension in the string is ML.

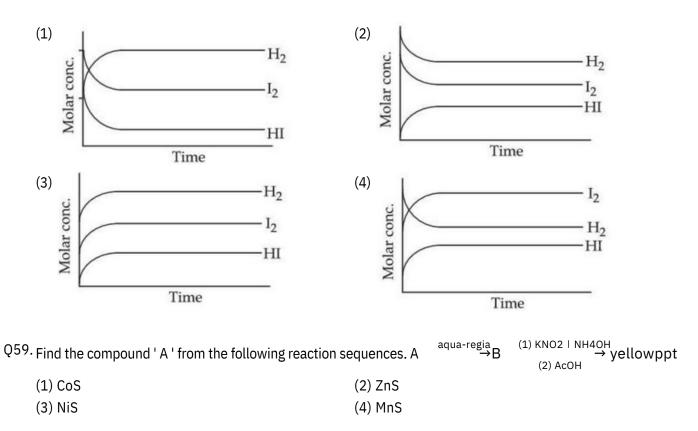
Q48. The increase in pressure required to decrease the volume of a water sample by 0.2% is P×105Nm-2. Bulk modulus of water is 2.15×109Nm-2. The value of P is

A tightly wound long solenoid carries a current of 1.5 A. An electron is executing uniform circular motion Q49. inside the solenoid with a time period of 75 ns. The number of turns per metre in the solenoid is

[Take mass of electron $m_e=9\times10$ -31 kg, charge of electron $|q|=1.6\times10-19$ C, $\mu 0=4\pi\times10^{-7}N_{A^2}$, 1ns=10-9s]

Acceleration due to gravity on the surface of earth is 'g'. If the diameter of earth is reduced to one third of its original value and mass remains unchanged, then the acceleration due to gravity on the surface of the earth is g.

Q51. For hydrogen atom, the orbital/s with lowest energy is/are : (A) 4 s (B) 3px (C) 3 dx2–y2 (D) 3 dz2 (E) 4pz Choose the correct answer from the options given below :

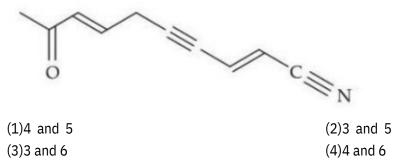

(1)(B), (C) and (D) only	(2)(A) and (E) only
(3)(A) only	(4)(B) only
Match List - I with List - II.	

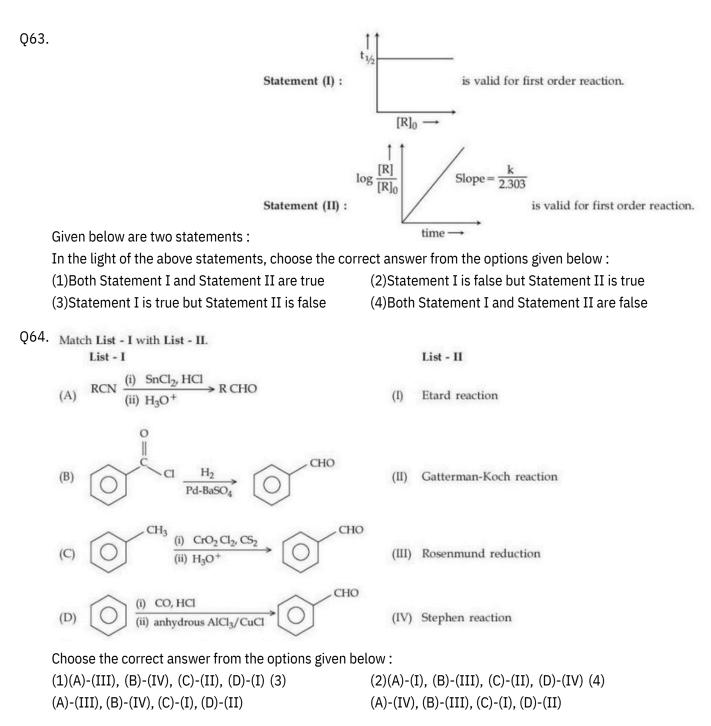
Q52.		List - I		List - II
		(Transition metal ion)		(Spin only magnetic moment (B.M.))
	(A)	Ti ³⁺	(I)	3.87
	(B)	V^{2+}	(II)	0.00
	(C)	Ni ²⁺	(III)	1.73
	(D)	Sc ³⁺	(IV)	2.84

Choose the correct answer from the options given below :

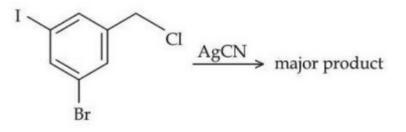
Q53. Given below are two statements : Statement (I): Experimentally determined oxygen-oxygen bond lengths in the O3 are found to be same and the bond length is greater than that of a O=O (double bond) but less than

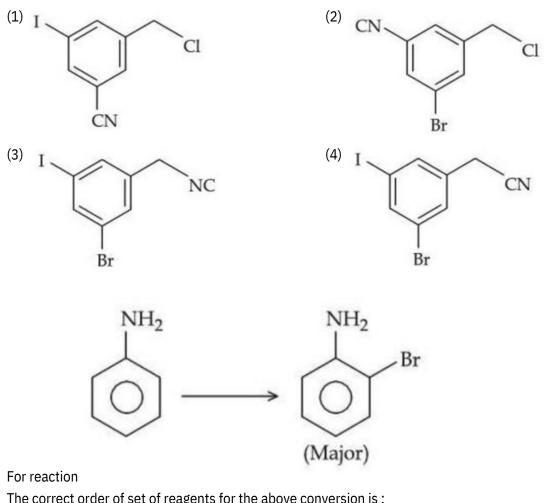
is solely responsible for the fact that the bond leng	rong lone pair-lone pair repulsion between oxygen atoms th in ozone is smaller than that of a double bond (O=O) ght of the above statements, choose the correct answer (2)Statement I is false but Statement II is true (4)Both Statement I and Statement II are true				
Q54. When Ethane-1,2-diamine is added progressively to an aqueous solution of Nickel (II) chloride, the sequence					
of colour change observed will be :					
(1) Violet \rightarrow Blue \rightarrow Pale Blue \rightarrow Green	(2)Pale Blue \rightarrow Blue \rightarrow Green \rightarrow Violet				
(3)Green \rightarrow Pale Blue \rightarrow Blue \rightarrow Violet	(4)Pale Blue \rightarrow Blue \rightarrow Violet \rightarrow Green				
Given below are two statements :					
Q55. Statement (I) : The first ionization energy of Pb is gr	eater than that of Sn .				
Statement (II) : The first ionization energy of Ge is g In the light of the above statements, choose the co					
In the light of the above statements, choose the col	rect answer nom the options given below.				
(1)Statement I is false but Statement II is true	(2)Statement I is true but Statement II is false				
(3)Both Statement I and Statement II are true	(4)Both Statement I and Statement II are false				
Q56. Identify correct statement/s : (A) –OCH3 and –NHCOCH3 are activating group. (B) -CN and -OH are meta directing group. (C) -CN and –SO3H are meta directing group. (D) Activating groups act as ortho - and para directing groups. (E) Halides are activating groups. Choose the correct answer from the options given below :					
(1)(A) only	(2)(A), (B) and (E) only				
(3)(A) and (C) only	(4)(A), (C) and (D) only				
$E_{MnO4/Mn^{2+}}^{\circ} = 1.5$	$ \begin{array}{ll} 23 \text{ V} & \text{ E}_{\text{Cl} \neq \text{Cl}(-)}^{\circ} &= 1.36 \text{ V} \\ 1 \text{ V} & \text{ E}_{\text{Cr}^{3+}/\text{Cr}}^{\circ} &= -0.74 \text{ V} \end{array} $ the strongest reducing agent is :				
(1) Cr	(2) Cl ⁻				
(3) MnO-4	(4) Mn ²⁺				
For the reaction, H2(g)+I2(g) \rightarrow 2HI(g) Attain	ment of equillibrium is predicted correctly by :				




Q60. The elemental composition of a compound is 54.2%C,9.2%H and 36.6%O. If the molar mass of the compound is 132 g mol-1, the molecular formula of the compound is : [Given : The relative atomic mass of C:H:O=12:1:16]

(1) C4H9O3	(2) C6H12O6
(3) C4H8O2	(4) C6H12O3

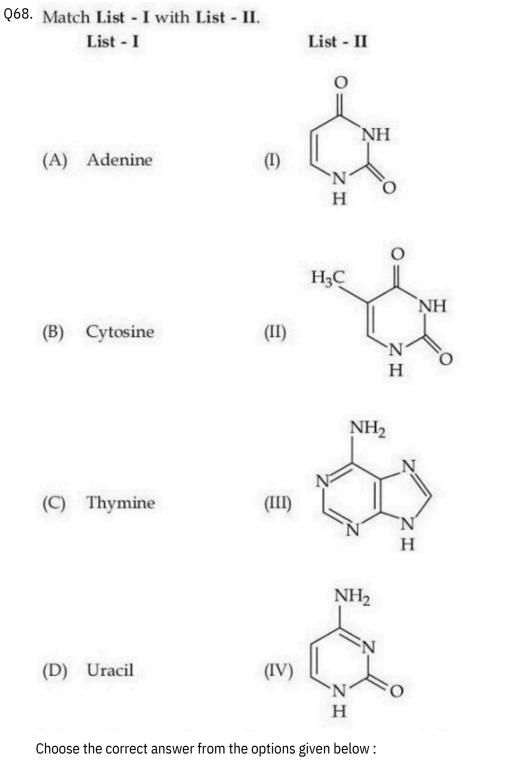

Q61. The conditions and consequence that favours the *t* 2ggeg configuration in a metal complex are (1)weak field ligand, low spin complex (2)weak field ligand, high spin complex (3)strong field ligand, high spin complex


In the given structure, number of sp and sp2 hybridized carbon atoms present respectively are :

Q65. The structure of the major product formed in the following reaction is :

The correct order of set of reagents for the above conversion is :

- (1) Br2 ∣ FeBr3,H2O(∆),NaOH
- (3) Ac2O,Br2,H2O(Δ),NaOH


(2) H2SO4,Ac2O,Br2,H2O(Δ),NaOH (4) Ac2O, H2SO4, Br2, NaOH

The successive 5 ionisation energies of an element are 800,2427,3658,25024 and 32824 kJ/mol, respectively. By using the above values predict the group in which the above element is present :

(1)Group 13

(3)Group 2

(2)Group 14 (4)Group 4

(1)(A)-(IV), (B)-(III), (C)-(II), (D)-(I) (3) (A)-(III), (B)-(IV), (C)-(I), (D)-(II) (2)(A)-(III), (B)-(IV), (C)-(II), (D)-(I) (4) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)

Q69. Which of the following mixing of 1 M base and 1 M acid leads to the largest increase in temperature?(1)30 mLCH3COOH and 30 mL NaOH(2)45mLCH3COOHand25mLNaOH(3)30 mL HCl and 30 mL NaOH(4)50 mL HCl and 20 mL NaOH

Q70. S(g)+ ³ 2O2(g)→SO3(g)+2xkcal	The heat of formation of SO 2 (g)s given by :
$SO_{\underline{A}}(g) + \frac{1}{2}O_{\underline{A}}(g) \rightarrow SO(_{3}g) + ykcal$	
(1) <i>x</i> ⊮ kcal	(2) <i>y</i> –2 <i>x</i> kcal
(3) 2 <i>x</i> kcal	(4) 2 <i>x+y</i> kcal

- Q71. In Carius method of estimation of halogen, 0.25 g of an organic compound gave 0.15 g of silver bromide (AgBr). The percentage of Bromine in the organic compound is ×10–1% (Nearest integer). (Given : Molar mass of Ag is 108 and Br is 80 g mol–1)
- Q72. The observed and normal molar masses of compound MX2 are 65.6 and 164 respectively. The percent degree of ionisation of MX2 is %. (Nearest integer)
- Consider a complex reaction taking place in three steps with rate constants k1,k2 and k3 respectively. The Q73.

overall rate constant is given by the expression $k = \sqrt{k} \frac{1}{k}$ 3. If the activation energies of the three steps are 60,30 and 10 kJ mol-1 respectively, then the overall energy of activation in kJmol-1 is (Nearest integer)

The possible number of stereoisomers for 5-phenylpent-4-en-2-ol is

The hydrocarbon (X) with molar mass 80 g mol–1 and 90% carbon has degree of unsaturation.

.

1. (3)	2. (3)	3. (2)	4.(1)	5.(1)	6.(3)	7.(1)	8.(2)
9.(2)	10 (3)	11.(1)	12 (1)	13 (3)	14 (4)	15 (3)	16 (3)
17 (2)	. (1)	19.(2)	. (1)	. (957)	. (16)	. (1)	. (392)
. (55)	18 (4)	27.(4)	20 (1)	21 (1)	22 (1)	23 (4)	24 (2)
25 (3)	. (2)	35.(4)	. (4)	. (1)	. (4)	. (4)	. (4)
. (4)	26 (3)	43.(2)	28 (2)	29 (3)	30 (5)	31 (36)	32 (43)
33 (250)	. (9)	51.(1)	. (1)	. (3)	. (3)	. (2)	. (4)
· (1)	34 (2)	59.(1)	36 (4)	37 (2)	38 (2)	39 (3)	40 (4)
41 (3)	· (2)	67.(1)	· (2)	· (3)	· (2)	· (255)	· (75)
. (20)	42 (4)	75.(3)	44	45	46	47	48
49							
	50		52	53	54	55	56
57	•					•	
	58		60	61	62	63	64
65							
	66		68	69	70	71	72
73							
	74						