Sponsored by:

Model Question Paper ATIT

INSTRUCTIONS

1. There are 120 questions in The Admission Test for IcfaiUniversity Technology (ATIT) 2013, and the allotted time 120 minutes.

Section	Subject	No.	of Questions	Time
I	English	30	(1-30)	30 Minutes
II	Mathematics	30	(31-60)	30 Minutes
III	Physics	30	(61-90)	30 Minutes
IV	Chemistry	30	(91-120)	30 Minutes
	Total	120		120 Minutes

- 2. Each question has four options (a, b, c and d). The candidates are required to choose the correct option.
- 3. Usage of any type of calculators and cell phones is strictly prohibited.
- 4. Any kind of malpractice will disqualify the candidate from ATIT.

Section I

Subject : ENGLISH

Time : 30 Minutes

Questions : 30 (Serial No. 01-30)

Section I

English

I.	Directions: In the following questions, each word is followed by four options. Choose the
	option which is the closest synonym of the given words. While choosing your answer, keep in
	mind the finer distinctions in the meaning and usage of certain words.

IDIOSYNCRASY

	(a) Disgrace	(b) Esteem	(c) Eccentricity	(d) Rebellion
2.	APLOMB			
	(a) Composure	(b) Aspiration	(c) Fluency	(d) Revolt
3.	MUTILATE			
	(a) Injure	(b) Contaminate	(c) Mollify	(d) Reconcile
4.	CEREMONIOUS			
	(a) Peccable	(b) Floppy	(c) Pompous	(d) Lavish
5.	DESPOTIC			
	(a) Outspoken	(b) Simple	(c) Quick	(d) Tyrannical
6.	WOE			
	(a) Bliss	(b) Sadness	(c) Patience	(d) Knowledge
II.	option which is the clo		ven words. While choo	four options. Choose the sing your answer, keep inds.
7.	BANALITY			
	(a) Originality	(b) Preciseness	(c) Specialty	(d) Selfishness
8.	CURRENCY			
	(a) Bankruptcy	(b) Insolvency	(c) Obsolescence	(d) Complacence
9.	FIASCO			
	(a) Fun	(b) Success	(c) Disparity	(d) Succession
10.	FICTITIOUS			
	(a) Natural	(b) Real	(c) Inferior	(d) Blunt
11.	LAMENT			
	(a) Spin	(1) 5 5	(a) Daiaia	(1) 0
	•	(b) Defeat	(c) Rejoice	(d) Suppress
12.	QUASH (a) Postpone	(b) Defeat	(с) кејогсе	(d) Suppress

III.	Direc optio	•	e the following sente	ences by selecting a su	itable word fron	n the given
13.	Mone	ey is not like car	s or cups of tea, beca	ause one cannot test-d	rive or	it.
	(a) T	aste	(b) Boil	(c) Heat	(d) Inhale	
14.				ne, hard work and tea of socialistic pattern of		the people for
	(a) S	uppression	(b) Expression	(c) Fulfillment	(d) Symbol	ism
15.	For r	nillions of patie	nts with terminal illne	esses, pain is an everyo	lay	
	(a) R	eality	(b) Surety	(c) Frequency	(d) Suppos	ition
16.			ings are not permitte nd affect all the think	d as inputs in the think ing in a hidden way.	ing process, the	ey will
	(a) S	hroud	(b) Lurk	(c) Fulminate	(d) Prowl	
IV.	mosi	t acceptable an		led for each of the for e four options. In con- arity and precision.		
17.	(a) (b) (c) (d)	Patients should not fly if they might have a heart attack in the past two weeks. Patients should not fly if they could have had a heart attack in the past two weeks.				
18.	(a) (b) (c) (d)	 (a) Nearly a quarter of the world's land mammal species are at a risk through extinction. (b) Nearly a quarter of the world's land mammal species are at a risk of extinction. (c) Nearly a quarter of the world's land mammal species are at a risk with extinction. 				ction. inction.
19.	(a)	The more carb	ohydrates we eat the	more efficiently our bo	ody uses them.	
	(b) (c) (d)	The more carb	ohydrates we eat mo	most efficiently our bore re efficiently our body re efficiently our body u	uses them.	
20.	(a)	Americans love	e the idea of that den	nocracy should look lik	e and argue all t	the time about
	(b)	what democrace Americans love time about who	e the idea of democra	acy and democracy sho	ould look like and	d argue all the
	(c)	That American	s love the idea of der	nocracy and argue all t	he time about w	hat that
	(d)	democracy sho Americans love should look lik	e the idea of democra	acy and argue all the tir	ne about what t	hat democracy

	Find out which part of the sentence contains an error. If there is no error, mark (d).
21.	The drama had /so many humorous scenes / (a) (b)
	that it was hard possible to keep a straight faceNo error (d)
22.	Despite their best efforts,/they could not convince/
	(a) (b)
	the members by changing their decision. No error (c)
23.	Teachers today are increasingly afraid /for being victimized /
	(a) (b)
	by laws that protect the children.No error (d)
24.	Scarcely had the game started /then the rain /came pouring down. No error (a) (b) (c)
25.	By the time /he had won his commission, the senior officer/
	(a) (b)
	had start seeking employment elsewhereNo error (c)
VI.	Directions: The given passage is followed by questions based on its content. Read passage and choose the best answer.

Directions: In the following questions, each sentence is divided into three parts (a), (b) and (c).

vour answer as

The control of fire was the first and perhaps the greatest of humanity's step towards a lifeenhancing technology. To early man, fire was a divine gift randomly delivered in the form of lightning, forest fire or burning lava. Unable to make flame for themselves, the earliest people probably stored fire by keeping slow-burning logs alight or by carrying charcoal in parts.

How and where man learnt how to produce flame at will is unknown. It was probably a secondary invention, accidentally made during tool-making operations with wood or stone. Studies of primitive societies suggest that the earliest method of making fire was through friction.

European

٧.

PRASants would insert a wooden drill in a round hole and rotate it briskly between their palms. process could be speeded up by wrapping a cord around the drill and pulling on each end.

The ancient Greeks used lenses or concave mirrors to concentrate the sun's rays and burning glasses were also used by Mexican Aztecs and the Chinese. Percussion methods of fire lighting date to Paleolithic times, when the Stone Age toolmakers discovered that chipping flints produced sparks. The technique became more efficient after the discovery of iron, about five thousand years ago.

In Arctic North America, the Eskimos produced a slow-burning spark by striking quartz against iron pyrites, a compound that contains sulphur. The Chinese lit fire by striking porcelain with bamboo. In Europe, the combination of steel, flint and tinder remained the main method of

lighting until the mid-nineteenth century

26.	According to the passage, what was the first and the greatest of humanity's step towards a life-enhancing technology?					
	(a) M	aking of fire		(b) The control of fire		
	(c) In	vention of tools		(d) The discovery of ire	on	
27.	How	did the primitive	societies view fire?			
		s a lightning s a heavenly gift		(b) As a blessing (d) As a burning lava		
28.	It is e	estimated that the	e earliest method of ma	aking fire was through		
	(a) R	otation	(b) Drilling	(c) Chipping	(d) Friction	
29. V	Vhich	of the following s	tatements is true accor	ding to the passage?		
	(a) (b) (c) (d)	The Chinese pro Eskimos produc	be used for producing f duced fire by striking p ed fire with bamboo hod of making fire was	orcelain with bamboo		
30.). Choose the synonym of 'primitive' as used in the passage.					
	(a) A	ncient	(b) Expensive	(c) Innovative	(d) Perilous	

END OF SECTION I

Section II

Subject : MATHEMATICS

Time : 30 Minutes

Questions : 30 (Serial No. 31-60)

Section II

Mathematics

Directions: Each question given below has a problem and four alternatives. You have to choose the best answer from the alternatives (a), (b), (c) and (d).

31.	The domain of th	ne function $f(x) = \int_{0}^{x} f(x) dx$	1!1!1!x2 is	
	(a) $\{x \mid x < 1\}$	(b) $\{x \mid x > -1\}$	(c) [0, 1]	(d) [-1, 1]
32.	If a set A has m eleme	ents and B has n eleme	nts, then the number o	f functions from A to B is
	(a) nm	(b) 2mn	(c) mn	(d) 2m+n
33.	Let $A = \{f\}$ and $B = P(F)$	P(A)), the power set of t	he power set of A. Ther	n B is
	(a) f	(b) {f}	(c) {{f}}}	(d) None of these
34.	If w is a non I	real cube root	of unity, then	the expression
	(2) ()	(b) 3	(c) 1	(d) 2
35.	The number of integra	al solutions of $x+2$ $x^2+1 > \frac{1}{2}$	L is	
	(a) 4	(b) 5	(c) 3	(d) Infinite
36.	For any m ¥ n matrix /	A and a fixed k, if a mat	rix K satisfies $KA = kA$,	then K is a
	(a) Transpose of A		(b) Diagonal matrix	
	(c) Symmetric matrix		(d) Skew Symmetric n	
37.	The system of equation nontrivial solutions if		y + z = 0; $lx - y + 2z = 0$) has infinite number of
	(a) 1	(b) 5	(c) -5	(d) 2
		x 2	5	
38.	The sum of two non in	ntegral roots of 3 x 5 4		
	(a) 5	(b) -5	(c) -18	(d) 16
39.			6 points are marked of with vertices on differ	on the sides AB, BC, CD ent sides is
	(a) 270	(b) 220	(c) 282	(d) 342

59. The image of the origin in the line $\begin{array}{c} x+1=y! \ 1=z \\ 2 \ 3 \ 3 \end{array}$ is $(a) \begin{array}{c} 1 \\ 1 \\ 1 \end{array}, \begin{array}{c} 1 \\ 1 \\ 2 \end{array}, \begin{array}{c} 3 \\ 2 \\ 2 \end{array},$

The shortest distance between the lines x - y = 0 = 2x + z and x + y - 2 = 0 = 3x - y + z - 1 is

1 2 (a)

(b) $\frac{1}{2}$

(c) 1 2

(d) 1

Section III

Subject : PHYSICS

Time : 30 Minutes

Questions : 30 (Serial No.61 - 90)

Section III

Physics

61. A vernier caliper has 20 divisions on the vernier scale which coincide with 19 on the main

scale. The leastcount of the instrument is 0.1 mm. The main scale divisions are of length

Directions Each question given below has four alternatives. You have to choose the best answer from the alternatives (a), (b), (c) and (d).

equal to

	(a) 0.5 mm	(b) 1 mm	(c) 2 mm	(d) 0.25 mm	
62. A boy throws up balls in the air in such a way that when the first ball is at its maximu height, he throws the second ball. If the balls are thrown with a time difference of 1 second then the height attained by the balls is					
	(a) 19.6 m	(b) 9.8 m	(c) 4.9 m	(d) 2.45 m	
63.	One of the rectangular rectangular components	•	ocity of 100 km h–1 is 5	03 km h–1. The other	
	(a) 503 km h-1	(b) 50 km h-1	(c) 502 km h-1	(d) 25 km h-1	
64.	In a game of tug of w forces of 1000 N at ea tension in the rope?	var, two opposing tear ach end of the rope so	ns are pulling the rope that a condition of equi	e with equal but opposite librium exists. What is the	
	(a) 2000 N	(b) 1000 N	(c) Zero	(d) 6400 N	
65. A thin circular ring of mass M and radius R is rotating about its central axis with ang velocity!. Four point objects each of mass m are attached gently to the opposite en two perpendicular diameters; the angular velocity of the ring now is				y to the opposite ends of the	
	(a) ^M .!	(b) $\frac{M}{M+4m}$.!	(c) M+4m M .!	(d) M!4m _"	
	M + m			M + 4 m equal to 3 of the escape	
66.	A body is thrown up i	Tom the surface of the	cartii with a velocity (4	
	velocity. Assume that	the radius of the earth	is R, the height attaine	d by the body is	
	(a) 19R	(b) 9R	(c) 7R	(d) 11R	
	20	7	9	7	
67.	• • •		e is 4.75 eV. The energolume of 5.6 litres is ap	gy required to dissociate oproximately	
	(a) 20 J	(b) 30 J	(c) 40 J	(d) 60 J	
68.			epresented by a = – kx, nstant. The period of os		
	(a) 2! k	(b) 2!	(c) 2!	(d) 2pk	
	(-,) = .	k	k	(a) -b.,	
		K	N		

69.		doubled. The first sample ed adiabatically. The final			
	(a) In the first sample (c) Is equal in both the		(b) In the second sam (d) Cannot be determine		
70.	The radiation emitted	by a perfectly black bo	dy is proportional to		
	 (a) Temperature on ideal gas scale (b) Fourth root of temperature on Kelvin's scale (c) Fourth power of temperature on Kelvin's scale (d) Square of temperature on Kelvin's scale 				
71.		• •	•	Calculate the electric field × 10–9 C and each side is	
	(a) 2.1 × 103 Vm-1	(b) $9.1 \times 10-2 \text{ Vm}-1$	(c) 1.8 × 104 Vm-1	(d) $0.9 \times 104 \text{ Vm}-1$	
72.	The resistance of a witton times its original		be the new resistance i	f it is stretched uniformly	
	(a) nR	(b) R n	(c) n2R	(d) R n2	
73.	_	es each of +q are place positive charge +2q at t		equilateral triangle of side gle will be	
	(a) Zero	(b) 3q 4!"d2	(c) 7q 4!"0d2	(d) 4!"d2 °	
74.	dielectric strength of	20 ¥ 106 Vm–1. If the o	capacitance of this capa	ic constant is 5 and has a acitor is 8.0 ¥ 10–2 �F and if e area of the capacitor is (d) 0.24 m2	
75.	Four wires each of resistance 1 ohm are connected in the form of a square. The equivalent resistance of the square when current enters at one corner and leaves at a diagonally opposite				
	corner will be (a) 1 �	(b) 2 �	(c) 4 �	(d) 8 �	
76.	, , ,		`, `	V. The power required to	
	operate the player in	• •			
77.		(b) 58.3 rom sodi um light (!=58 °. To increase the fringe			
	(a) 5896 Å	(b) 7321 Å	(c) 6300 Å	(d) 6479 Å	
78.		re of convex surface of material is 1.6. The pov		s is 15 cm and the	

(c) +3 D

(d) + 4 D

(a) +1 D

(b) -2 D

		(a) Will be possible(c) Will not be possible	9	(b) Depends on the sm (d) Both (a) and (b)	noothi	ness of the surface
8	0.	If E is the kinetic ener wavelength associated	-	moving particle with v	elocit	y v, the De-Broglie
		(a) 2mEv	(b) hv E	(c) hEv 2m	(d)	h 2mE
8	1.			Å is incident on a surfa e at which photons stri (c) 7 × 1015 s–1	ke the	
8	2.		ive material is 1 day. I at will remain after 4 da	f the starting material ays is	has a	mass of 16 mg, the
		(a) 12 mg	(b) 8 mg	(c) 4 mg	(d) 1	mg
8	3.			ed as fuel, uses 2 kg of ne (given that the ener		
		(a) 43.5 MW	(b) 58.5 MW	(c) 69.6 MW	(d) 7	3.1 MeV
8	4.		s forward biased, poter			
		(a) Decreases(c) Remains constant		(b) Increases(d) Cannot be determine	ned	
8	5.	connected in parallel.		cuit containing two wir ii of the wires are in the wires will be		
		(a) 3	(b) 1/3	(c) 8/9	(d) 2	
8	6.	parallel, the total resis	stance is P. If S = nP, th	f two resistances is S. en the minimum possib	ole va	lue of n is
0	7	(a) 4	(b) 3	(c) 2	(d) 1	
ŏ	7.	unchanged, the induct	tance should be change			
		(a) 4L	(b) 2L	(c) L/2	(d) L,	
8	8.	5 radians per second.		tically about one of its onent of the earth's ma ds of the conductor is		
		(a) 5 �V	(b) 50 V	(c) 5 mV	(d) 5	0 mV
8	9.	•		5 hours. If the separatous value, the new time (c) 80 hours	perio	

79. The work function of aluminum is 4.2 eV. If two photons each of energy 3.5 eV strike an electron of aluminum, then emission of photoelectron

- 90. Consider the following two statements.
 - A. Linear momentum of a system of particles is zero.
 - B. Kinetic energy of a system of particles is zero.

Then

- (a) A implies B and B implies A
- (b) A does not imply B and B does not imply A
- (c) A implies B but B does not imply A
- (d) A does not imply B but B implies A

END OF SECTION III

Section IV

Subject : CHEMISTRY

Time : 30 Minutes

Questions : 30 (Serial No.91-120)

Section IV

Chemistry

Directions: Each question given below has four alternatives. You have to choose the best answer

from	the alternatives (a), (b), (c) and (d).				
91.	The position of N	a+ ions in NaCl structur	e are			
	(a) Corners of the cube(c) Edge centres of the cube		(b) Body centre o (d) Both (b) and (
92.	A matchbox exhi	bits				
	(a) Cubic geometry (c) Tetragonal geometry		(b) Monoclinic ge (d) Orthorhombic			
93.	The electrical co	nductivity of semicondu				
	(a) Increases wit (c) Remains cons	•		(b) Decreases with temperature (d) None of the above		
94.		_	•	ccupied 95 cm3 under press a pressure of 10.13 ¥ 104 Nn		
	(a) 190 cm3	(b) 93 cm3	(c) 46.5 cm3	(d) 47.5 cm3		
95.	The following equal N2 + 3H2 ‡^^^† N2 + O2 ‡^^^† H2 + ½ O2 ‡^^^	2NO; K2				
	The equilibrium constant of the reaction 2NH3 + $5/2$ 02 \ddagger ^^ \uparrow 2NO + 3H2O in terms of K1, K2 and K3 is					
	(a) K 1K2/K3	(b) K1K3 ² K2	(c) K2K3 ³ K1	(d) K1K2K3		
96.		n constant of the reactio 2 + I2 ‡^^^†^ 2HI woul		is 0.25, the equilibrium cons	tant	
	(a) 4	(b) 3	(c) 2	(d) 1		
97.	When NaNO3 is equilibrium,	heated in a closed vess	sel, oxygen is liberated	and NaNO2 is left behind.	٩t	
	(a) Addition of	NaNO2 favours reverse	reaction			

Addition of NaNO3 favours forward reaction Increasing temperature favours forward reaction All statements are correct

(b) (c) (d)

The effect of increasing the pressure on the following 2A + 3B‡^ ^ 3A+ 2B equilibrium is								
that	that							
			(b) Backward reaction is favoured(d) Both the reactions are favoured					
A cer	A certain buffer solution contains equal concentrations of X– and HX. The K for HX is 10–8							
The p	The pH of the buffer is							
(a) 3		(b) 8	(c) 11	(d) 14				
70. The solubility product of AgI at 25°C is 1.0 ¥ 10–16 mol2L–2. The solubility of AgI in 1 solution of KI at 25°C is approximately (in mol L–1)								
(a) 1.	0 × 10-12	(b) 1.0 × 10-10	(c) 1.0 × 10-8	(d) 1.0 × 10–16				
01. During isothermal expansion of an ideal gas, its								
			(b) Enthalpy decreases (d) Enthalpy reduces to zero					
Value	Values of heats of formation for SiO2 and MgO are –48.4 and –34.7 kJ respectively. The heat							
(a) 22	L.16 kJ	(b) -21.00kJ	(c) -13.62 kJ	(d) 13.6 kJ				
For a	For a reaction to be spontaneous at all temperatures							
(a) Δ0	G and ΔH should	be negative	(b) $\Delta H = \Delta G = 0$					
(c) ΔG and ΔH should be positive (d) $\Delta H < \Delta G$								
75% of a reaction of the first order was completed in 32 minutes. When was its half-life								
comp	leted?							
(a) 8	minutes	(b) 16 minutes	(c) 10 minutes	(d) 7.5 minutes				
Whic								
(a) High concentration of dispersed phase can be easily attained								
 (b) Coagulation is reversible (c) Viscosity and surface tension are about the same as for water (d) The charge of the particle depends on the pH value of the medium; it maybe positive, negative or even zero 								
The n	The molar conductivity of a strong electrolyte							
(a) Increases on dilution(c) Decreases on dilution			(b) Does not change considerably on dilution(d) Depends on density					
Whic	Which of the following has the maximum number of unpaired electrons?							
(a) M	g2+	(b) Ti3+	(c) V3+	(d) Fe2+				
	that (a) For a (b) A composition (a) In (c) Err Value of the (a) 22 For a (a) A0 (c) A0 (75% composition (a) (b) (c) (d) The rr (b) Composition (a) In (c) De (c) (d) The rr (c) De (d) Whice	that (a) Forward reaction is (c) Neither reaction is A certain buffer solution. The pH of the buffer is (a) 3 The solubility product solution of KI at 25°C (a) 1.0 × 10–12 During isothermal exp (a) Internal energy inc (c) Enthalpy remains to Values of heats of form of the reaction 2Mg + (a) 21.16 kJ For a reaction to be sp (a) ΔG and ΔH should (c) ΔG and ΔH should (c) ΔG and ΔH should 75% of a reaction of completed? (a) 8 minutes Which of the following (a) High concentration (b) Coagulation is reconstructed (c) Viscosity and su (d) The charge of the negative or even the molar conductivition (a) Increases on dilution (c) Decreases on dilution (c) Decreases on dilution (d) The charge of the molar conductivition (d) Increases on dilution (e) Decreases on dilution (e) Decreases on dilution (e) The molar conductivition (e) Decreases on dilution (e) Decreases (e) Decreas	that (a) Forward reaction is favoured (c) Neither reaction is favoured A certain buffer solution contains equal conc The pH of the buffer is (a) 3 (b) 8 The solubility product of AgI at 25°C is 1.0°S solution of KI at 25°C is approximately (in more and an ideal gas, and an ideal gas, and an ideal gas, and internal energy increases (c) Enthalpy remains unaffected Values of heats of formation for SiO2 and Mg of the reaction 2Mg + SiO2 Æ 2MgO + Si is (a) 21.16 kJ (b) -21.00kJ For a reaction to be spontaneous at all temper (a) AG and AH should be negative (c) AG and AH should be positive 75% of a reaction of the first order was concompleted? (a) 8 minutes (b) 16 minutes Which of the following is not a property of hy (a) High concentration of dispersed phase (b) Coagulation is reversible (c) Viscosity and surface tension are about an inegative or even zero The molar conductivity of a strong electrolyte (a) Increases on dilution (b) Decreases on dilution (c) Decreases on dilution (d) The following has the maximum numerous decreases an inequal to the following has the maximum numerous decreases and inequal to the following has the maximum numerous decreases and inequal to the following has the maximum numerous decreases and inequal to the following has the maximum numerous decreases and inequal to the following has the maximum numerous decreases and inequal to the first order was considered.	that (a) Forward reaction is favoured (c) Neither reaction is favoured (d) Both the reactions A certain buffer solution contains equal concentrations of X— and HX. The pH of the buffer is (a) 3 (b) 8 (c) 11 The solubility product of AgI at 25°C is 1.0 ± 10^{-16} mol2L—2. The solution of KI at 25°C is approximately (in mol L—1) (a) 1.0×10^{-12} (b) 1.0×10^{-10} (c) 1.0×10^{-8} During isothermal expansion of an ideal gas, its (a) Internal energy increases (b) Enthalpy decrease (c) Enthalpy remains unaffected (d) Enthalpy reduces to Values of heats of formation for SiO2 and MgO are -48.4 and -34.7 of the reaction $2Mg + SiO2 \not = 2MgO + Si$ is (a) 21.16 kJ (b) -21.00kJ (c) -13.62 kJ For a reaction to be spontaneous at all temperatures (a) ΔG and ΔH should be negative (b) $\Delta H = \Delta G = 0$ (c) ΔG and ΔH should be positive (d) $\Delta H < \Delta G$ 75% of a reaction of the first order was completed in 32 minutes completed? (a) 8 minutes (b) 16 minutes (c) 10 minutes Which of the following is not a property of hydrophilic sols? (a) High concentration of dispersed phase can be easily attained (b) Coagulation is reversible (c) Viscosity and surface tension are about the same as for water (d) The charge of the particle depends on the pH value of the meding attive or even zero The molar conductivity of a strong electrolyte (a) Increases on dilution (b) Does not change of the particle depends on density which of the following has the maximum number of unpaired electrons.				

108.	respe	The atomic numbers of vanadium (V), chromium (Cr), manganese (Mn) and iron (Fe) are respectively 23, 24, 25 and 26. Which of the following can have the highest second ionization enthalpy?							
	(a) V		(b) Cr	(c) Mn	(d) Fe				
109.	The ba	The basic character of the transition metal monoxides follows the order							
		0 > V0 > Fe0 > ⁻ 0 > V0 > Cr0 > F		(b) TiO > FeO > VO > CrO (d) VO > CrO > TiO > FeO					
110.	On add	n adding KI to a solution of CuSO4							
	 (a) Cupric oxide is precipitated (b) Metallic copper is precipitated (c) Cuprous iodide is precipitated with the liberation of iodine (d) No change takes place 								
111.	. Addition of high proportions of manganese makes steel useful in making rails of railrobecause manganese								
	(b) H	Can deform the	mation of oxides of iro						
112.			tomic number of La is radius of Lu3+ (atomic		n of the following values will ຈ				
	(a) 1.6	_	(b) 1.40 Å	(c) 1.06 Å	(d) 0.85 Å				
113.	X + H2	2SO4 Æ Y a colo	rless gas with irritatin	g smell	. ,				
	Y + K2	Y + K2Cr2O7 + H2SO4 Æ Green solution							
	X and Y are								
	(a) SO	2 -, SO ²	-	(c) S, ² H2S	(d) CO3, CO2				
114.	An aqı and fil	An aqueous solution of FeSO4.Al2(SO4)3 and chrome alum is heated with excess of Na2O2 and filtered. The materials obtained are							
			e and a green residue nd a brown residue	(b) A yellow filtrate and a green residue (d) A green filtrate and a brown residue					
115.	A new	A new carbon-carbon bond formation is possible in							
		nnizzaro reactio emmensen redu		(b) Friedel-Craft alkylation (d) BVZ reaction					
116.	The fo	The formation of cyanohydrin from a ketone is an example of							
		ectrophilic addit cleophilic subst		(b) Nucleophilic addition(d) Electrophilic substitution					

117. CH3COCH3 can be converted to CH3CH2CH3 by the action of

(a) HIO3

(b) HI

(c) HNO3

(d) H3PO3

118. Butyramide is boiled with aqueous NaOH, then the reaction mixture is acidified with HCl.
The products obtained are

(a) CH CHCHCOQ-+ NH

(b) CH CHCHCOQ- + NH+ + CI-

(c) CH €H 2CH2COONa + NH3

(d) CH3 CH2CH2COOH + Na + Cl

119. Quicklime and slaked lime are, respectively

(a) CaCO3 and Ca(OH)2

(b) CaO and Ca(OH)2

(c) Ca(OH)2 and CaO

(d) CaO and CaCO3

120. Which of the following structures represents the best resonance form for the following compound?

H C=
(a) & C - C : \therefore H H

H C=

(c) H C-C

(d) & C – C, H H H

END OF SECTION IV

END OF QUESTION PAPER

Q.NO	SUBJECT	ANSWE R	Q.NO	SUBJECT	ANSWER	Q.NO	SUBJECT	ANSWER	Q.NO	SUBJECT	ANSWER
1	ENGLISH	С	31	MATHEMATICS	D	61	PHYSICS	С	91	CHEMISTRY	D
2	ENGLISH	Α	32	MATHEMATICS	Α	62	PHYSICS	С	92	CHEMISTRY	D
3	ENGLISH	Α	33	MATHEMATICS	D	63	PHYSICS	В	93	CHEMISTRY	A
4	ENGLISH	С	34	MATHEMATICS	В	64	PHYSICS	В	94	CHEMISTRY	В
5	ENGLISH	D	35	MATHEMATICS	С	65	PHYSICS	В	95	CHEMISTRY	С
6	ENGLISH	В	36	MATHEMATICS	В	66	PHYSICS	В	96	CHEMISTRY	A
7	ENGLISH	Α	37	MATHEMATICS	С	67	PHYSICS	D	97	CHEMISTRY	D
8	ENGLISH	С	38	MATHEMATICS	В	68	PHYSICS	В	98	CHEMISTRY	С
9	ENGLISH	В	39	MATHEMATICS	D	69	PHYSICS	Α	99	CHEMISTRY	В
10	ENGLISH	В	40	MATHEMATICS	В	70	PHYSICS	С	100	CHEMISTRY	A
11	ENGLISH	С	41	MATHEMATICS	В	71	PHYSICS	D	101	CHEMISTRY	С
12	ENGLISH	D	42	MATHEMATICS	В	72	PHYSICS	D	102	CHEMISTRY	В
13	ENGLISH	Α	43	MATHEMATICS	Α	73	PHYSICS	Α	103	CHEMISTRY	A
14	ENGLISH	С	44	MATHEMATICS	Α	74	PHYSICS	Α	104	CHEMISTRY	В
15	ENGLISH	Α	45	MATHEMATICS	С	75	PHYSICS	В	105	CHEMISTRY	С
16	ENGLISH	В	46	MATHEMATICS	Α	76	PHYSICS	Α	106	CHEMISTRY	В
17	ENGLISH	D	47	MATHEMATICS	Α	77	PHYSICS	D	107	CHEMISTRY	D
18	ENGLISH	В	48	MATHEMATICS	Α	78	PHYSICS	D	108	CHEMISTRY	В
19	ENGLISH	Α	49	MATHEMATICS	С	79	PHYSICS	С	109	CHEMISTRY	С
20	ENGLISH	D	50	MATHEMATICS	Α	80	PHYSICS	D	110	CHEMISTRY	С
21	ENGLISH	С	51	MATHEMATICS	Α	81	PHYSICS	В	11	CHEMISTRY	Α
22	ENGLISH	С	52	MATHEMATICS	В	82	PHYSICS	D	1	CHEMISTRY	В
23	ENGLISH	В	53	MATHEMATICS	В	83	PHYSICS	В	11	CHEMISTRY	Α
24	ENGLISH	В	54	MATHEMATICS	Α	84	PHYSICS	Α	2	CHEMISTRY	С
25	ENGLISH	С	55	MATHEMATICS	С	85	PHYSICS	Α	11	CHEMISTRY	В
26	ENGLISH	В	56	MATHEMATICS	С	86	PHYSICS	Α	316	CHEMISTRY	В
27	ENGLISH	С	57	MATHEMATICS	Α	87	PHYSICS	С	11 117	CHEMISTRY	В
28	ENGLISH	D	58	MATHEMATICS	С	88	PHYSICS	В	1 18	CHEMISTRY	D
29	ENGLISH	В	59	MATHEMATICS	С	89	PHYSICS	D	11 119 5	CHEMISTRY	В
30	ENGLISH	Α	60	MATHEMATICS	В	90	PHYSICS	D	120	CHEMISTRY	D