PREVIEW QUESTION BANK

Module Name : GAT- B 2024-ENG Exam Date : 20-Apr-2024 Batch : 09:00-12:00

Sr. No.	Client Question ID	Question Body and Alternatives	Marks	Negativ Marks
Objec ⁻	tive Question			
1	11001	Assume that a narrow tunnel is dug between two diametrically opposite points on the earth's surface. If a particle is released in this tunnel, it will execute a simple harmonic motion. What will be the time period of SHM of this particle?	1.0	0.50
<u>2</u>	11002	If a body is performing uniform circular motion with velocity v and radius R, then identify the true statements from the following: A. Its velocity v is constant. B. Acceleration is always directed towards the centre and its magnitude is a = v²/R. C. Angular momentum is constant in magnitude but its direction keeps changing. D. Angular velocity of the body ω = v/R. Choose the most appropriate answer from the options given below. (1) A and C only (2) B and D only (3) A, B and D only (4) A and D only A1:1 A2:2	1.0	0.50
		A4:4		
)hiec	tive Question	A4:4		

4/20/	24, 6:51 PM	4_Live_GATB_E_1-160.html		
		A proton and a deuteron moving with equal kinetic energy enter perpendicularly into a magnetic field. What will be the ratio of radii of the circular path of the proton to that of the deuteron? (1) 1 (2) 2 (3) 1/2 (4) 1/√2 A1:1 A2:2 A3:3 A4:4		
4	active Question 11004	A big oil droplet of radius 10 cm is broken into a thousand equal droplets. What will be the gain in surface energy? (Surface tension of the oil is 0.1 Nm ⁻¹) (1) 5 J (2) 10 J (3) 0.11 J (4) 0.25 J A1:1 A2:2 A3:3 A4:4	1.0	0.50
Obj	11005	Two parallel rail tracks run east-west. Train P moves in east direction with a speed of 36 kmh ⁻¹ and train Q moves with a speed of 72 kmh ⁻¹ in west direction. What is the velocity of Q with respect to P? (1) 30 m/s from east to west (2) 30 m/s from west to east (3) 36 m/s from west to east (4) 10 m/s from east to west A1:1 A2:2 A3:3 A4:4	1.0	0.50

)/24,	6:51 PM	4_Live_GATB_E_1-160.html		
	ve Question		1	
	11006	Identify the statement which in NOT true for a 'conservative force'	1.0	0.50
		(1) The work done by the conservative force depends only on the end points.		
		(2) The work done by a conservative force in a closed path is zero.		
		(3) Spring force and frictional force are conservative.		
		(4) The total mechanical energy of a system is conserved if forces doing work on it are conservative.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
bjecti	ve Question			
	11007	A boy sitting on a surface inside a satellite moving around the earth feels weightless because	1.0	0.50
		(1) the earth does not attract the object in a satellite		
		(2) the reaction on the person balances the gravitational force		
		(3) a person sitting in the satellite is not accelerated		
		(4) the normal force (reaction) is zero		
		(y and normal local (local and y to zero		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
hiecti	ve Question			
	11008		1.0	0.50

Two cylindrical vessels of equal cross-sectional area A contain water up to height h1 and h2. The vessels are interconnected so that the levels in them become equal. What is the work done during this process if ρ is the density of water? D h₁ h_2 $^{(1)}\,\rho.A.(h_1-h_2)$ (2) $\rho.A.(h_1-h_2)/2$ (3) ρ .A. $(h_1 - h_2)^2$.g $^{(4)}$ p.A. $[(h_1-h_2)/2]^2$.g A1:1 A2:2 A3:3 A4:4 Objective Question 11009 A bullet of mass 20 g, moving at 50 m/s penetrates 20 cm into a wooden block. What is the $^{\mid 1.0 \mid}$ 0.50 magnitude of the force exerted on the wooden block? (1) 625 N (2) 225 N (3) 125 N (4) 725 N A1:1 A2:2 A3:3 A4:4 Objective Question 11010 1.0 0.50

		Identify which of the following statements regarding significant figures are correct A. 6.405 has four significant figures		
		B. 12300 has five significant figures		
		C. 0.00421 has five significant figures		
		 D. 4.500 has four significant figures Choose the most appropriate answer from the options given below. 		
		(1) A, B and C only		
		(2) A and D only		
		(3) C and D only		
		(4) B and D only		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	tive Question			
11	11011	The cross product of vector \vec{A} and vector \vec{B} has a magnitude of 50 unit, where vector \vec{A} has a	1.0	0.50
		magnitude of 10. The angle between vector \vec{A} and \vec{B} is 60 degrees. What is the magnitude of		
		vector B ?		
		$(1) \frac{5}{\sqrt{2}}$		
		$(2) \frac{10}{\sqrt{2}}$		
		(3) 10		
		(0) $\frac{1}{\sqrt{3}}$		
		(4) _5		
		$\sqrt{3}$		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object 12	tive Question 11012	A recistor P discipates power P when connected to a generator If another recistor O is got in	1.0	0.50
		A resistor R dissipates power P when connected to a generator. If another resistor Q is put in series with R, the power dissipated by R will		
		(1) Increase		
		(2) Decrease		
		(3) Remain the same		
		(4) Increase or decrease depending on the values of R and Q		
		A1:1		

		A2:2		
		A3:3		
		A4:4		
Object 13	ive Question		1.0	0.50
		The electric charge on a body is always an integral multiple of 'e' where 'e' is the charge that an electron or proton carries. This concept is known as		
		(1) Additivity of charges		
		(2) Quantization of charges		
		(3) Conservation of charges		
		(4) Principle of superposition		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ohiect	ive Question			
14	11014	Match items in List I with items in List II	1.0	0.50
		List I (Type of thermodynamic process) List II (Work done)		
		A. Isotermal I. Zero		
		B. Adiabatic II. µR (T ₂ -T ₁)		
		C. Isochoric III. µRT In V ₂ /V ₁		
		D. Isobaric IV. $\mu R (T_1 - T_2) / (\gamma - 1)$		
		Choose the correct answer from the options given below :		
		(1) A-III, B-IV, C-I, D-II		
		(2) A-IV, B-III, C-I, D-II		
		(3) A-III, B-IV, C-II, D-I		
		(4) A-III, B-I, C-IV, D-II		
		A1:1		
		A2.2		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
15	11015		1.0	0.50

10/24, 6:51 PN	4_Live_GATB_E_1-160.html Two parrallel plate capacitors each of 15 μF capacity are connected in series. The space between the plates of one capacitor is filled with a dielectric material of dielectric constant $K = 2$. The equivalent capacitance of the system will be (1) 45 μF (2) 30 μF (3) 10 μF (4) 15 μF		
	A1:1 A2:2 A3:3 A4:4		
bjective Questi			0.50
	Many enzymes catalyze both forward and reverse reactions. Which one of the following statement is NOT correct? (1) An equilibrium is established after some time. (2) It is possible to control the directions of the reaction by suitably removing the formed product. (3) These reactions are both temperature and concentration dependent. (4) The forward and reverse reactions proceed via different activation complexes. A1:1 A2:2 A3:3 A4:4		
bjective Questi			10.50
11017	(1) electrophilic substitution (2) hydrolysis (3) esterification (4) nucleophilic substitution	1.0	0.50
	A2:2		
	A3:3		

	18	11018	Which one of the following is an aromatic compound? A B C D	1.0	0.50
			(1) A (2) B		
			(3) C		
			(4) D		
			A1:1		
			A2:2		
			A3:3		
			A4:4		
	Objecti	ve Question			
- 15		11019	Given below are two statements	1.0	0.50
			Statement I: Precision refers to the closeness of various measurements for		
			the same quantity.		
			Statement II: Accuracy is the agreement of the obtained value with the known		
			or true value of the quantity.		
			In light of the above statements, choose the correct answer from the options given below:		
			(1) Both Statement I and Statement II are correct		
			(2) Both Statement I and Statement II are NOT correct		
			(3) Statement I is correct, but Statement II is not correct		
			(4) Statement I is not correct, but Statement II is correct		
			A1:1		
			A2:2		
			A3:3		
			A4:4		
	Objecti	ve Question			
- 15		11020	Which one of the following transition metals is present in Vitamin B12?	1.0	0.50
			(1) Mn		
			(2) Co		
			(3) Zn		
			(4) Cu		
			A1:1		
			A2:2		
Ш		ı I			

		A3:3		
		A4:4		
01:1:1				
21	ive Question 11021	Which are of the fellowing dwar contains C leaters atwarters 2	1.0	0.50
		which one of the following drugs contains p-factain structure ?		
		(1) Penicillin		
		(2) Sulphanilamide		
		(3) Erythromycin		
		(4) Chloramphenicol		
		A1:1		
		A2:2		
		n2.2		
		A3:3		
		A4:4		
Object 22	ive Question 11022		1.0	0.50
22	11022	Which law of thermodynamics states that "energy of an isolated system is constant"?	1.0	0.50
		(1) First		
		(2) Second		
		(3) Third		
		(4) Zeroth		
		A1:1		
		A2:2		
		n2.2		
		A3:3		
		A4:4		
Object 23	ive Question 11023		1.0	0.50
23	11023	According to the molecular orbital theory, which of the following molecules should exhibit	1.0	0.50
		paramagnetism?		
		(1) O ₂		
		$(2) N_2$		
		(3) F ₂		
		(4) C ₂		
		A1:1		
		A2:2		
		A3:3		
		A4:4		

/ ,	:51 PM	4_Live_GATB_E_1-160.html	II	П
	Question 1024	It is possible to separate o-nitrophenol and p-nitrophenol using steam distillation because o-nitrophenol has (1) Van der Waals force (2) Steric hindrance (3) Intermolecular H-bonding (4) Intramolecular H-bonding A1:1 A2:2 A3:3 A4:4	1.0	0.50
)hiective	Question			
	1025	Natural rubber is a polymer of while synthetic rubber neoprene is formed by polymerization of (1) 1,3-butadiene; acrylonitrile (2) 2-chloro-1,3-butadiene;1,3-butadiene (3) 2-methyl-1,3-butadiene;2-chloro-1,3-butadiene (4) Acrylonitrile;2-methyl-1,3-butadiene A1:1 A2:2 A3:3 A4:4	1.0	0.50
Objective	Question			
	1026	Arrange the following in decreasing order of their acidic strength A. CH ₃ COOH B. CICH ₂ COOH C. CI ₂ CHCOOH D. CI ₃ CHCOOH E. F ₃ CCOOH Choose the correct answer from the options given below: (1) A > B > C > D > E (2) E > D > C > B > A	1.0	0.50

1	1	/5a

4/20/2	4, 6:51 PM	4_Live_GATB_E_1-160.html			
4/20/24	4, 6:51 PM	A nucleic acid chain comprises of A. Phosphate group B. Nitrogen base C. Pentose sugar D. Thiol group E. β (1 – 4) linkage Choose the correct answer from the options given below: (1) B and C only (2) B, D and E only (3) A, D and E only (4) A, B and C only A1:1 A2:2 A3:3			
		A4:4			
Ohioo	tive Overtice				4
30	11030	Which of the following elements readily react with oxygen to form their oxides ?	1.0	0.50	
		(1) Au and Pt			
		(2) Ne and Ar			
		(3) Al and Cu			
		(4) Cu and Pt			
		A1:1			
		A2:2			
		A3:3			
		A4:4			
	tive Question				
31	11031	Which one of the following is caused by point mutation?	1.0	0.50	
		(1) Turner's syndrome			
		(2) Down's syndrome			
		(3) Sickle cell anemia			
		(4) Kleinefelter's syndrome			
		A1:1			
		A2:2			
		A3:3			
					12/59

20/24	4, 6:51 PM	4_Live_GATB_E_1-160.html		
		A4:4		
Objec	tive Question			
32	11032	Which is NOT the function of placenta?	1.0	0.50
		(1) Supply of oxygen and nutrients to the embryo		
		(2) Removal of excretory waste products produced by embryo		
		(3) Production of hCG and HPL		
		(4) Supply all types of antibodies to the embryo		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objec	tive Question			
33	11033	Which statement is true with respect to colostrum?	1.0	0.50
		(1) It is a yellowish fluid secreted by the mother during later days of lactation.		
		(2) Colostrum provides passive immunity to the infant.		
		(3) Colostrum is rich in carbohydrates and has no antibodies.		
		(4) Colostrum provides active immunity to the infant.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objec 34	tive Question		1.0	0.50
J4	11034	Bacillus thurinigiensis CryA controls certain caterpillar pests by	1.0	0.50
		(1) turning toxic in the acidic pH of their gut medium		
		(2) turning toxic in the alkaline medium of their gut		
		(3) repelling them from the crops		
		(4) inducing satiation in them		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objec	tive Question			
35	11035		1.0	0.50

.0/24, 6:51 PM	4_Live_GATB_E_1-160.html		
	Which of the following options correctly match the name of gene and its function in cloning vector pBR322?	3	
	(1) Cla I - Acts as selectable marker to identify non-transformants		
	(2) amp ^r - Codes for plasmid amplifying enzymes		
	(3) rop - Codes proteins required for plasmid replication		
	(4) ori - Controls plasmid size		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
bjective Question			
5 11036	Which one of the following statements about AIDS caused by HIV is correct?	1.0	0.50
	(1) The time lag between the HIV infection and AIDS manifestation varies from 2-3 weeks.		
	(2) After entering the body, HIV enter B-lymphocytes.		
	(3) The AIDS-affected individuals are more susceptible to Tuberculosis.		
	(4) HIV infection depletes only the CD8 lymphocytes in the body.		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
bjective Question			
7 11037	The two heavy chains of a human antibody are linked to each other by	1.0	0.50
	(1) hydrogen bond		
	(2) glycosidic bond		
	(3) phosphodiester bond		
	(4) disulfide bond		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
Objective Question			
8 11038		1.0	0.50

		 (2) Stimulating the Na⁺ and K⁺ reabsorption, while H₂O and PO₄³⁻ excretion (3) Stimulating the H₂O reabsorption and Na⁺ excretion 		
		(4) Stimulating the Na ⁺ and PO ₄ reabsorption, while K ⁺ excretion		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	tive Question		1.0	0.50
	11037	At G2/M checkpoint the cell cycle will arrest if	1.0	0.50
		(1) The cell has not achieved an adequate size		
		(2) The spindle fibre formation has not occurred (3) The DNA replication or repair of DNA damage has not been completed		
		(4) The attachment of the spindle fibres to the kinetochore of centromeres is not adequate		
		, ,		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ctive Question			
40	11040	Choose the option that correctly matches for an immunosuppressant and its origin	1.0	0.50
		(1) Cholesterol - Palm Oil		
		(2) Cyclosporin A - Trichoderma polysporum		
		(3) Streptokinase - Streptococcus		
		(4) Botulinum toxin - Clostridium botulinum		
		A1:1		
		A2:2		
		A3:3		
		A3:3 A4:4		
Objec	ttive Question			
Object 41	tive Question		1.0	0.50
			1.0	0.50

20/24, 6:51 PM	4_Live_GATB_E_1-160.html		
	Which statement is true with respect to meiosis?		
	(1) Meiosis involves two sequential cycles of nuclear and cell division but only a single cycle of DNA replication.		
	(2) Meiosis involves one cycle of nuclear and cell division but two cycles of DNA replication.		
	(3) Four diploid cells are formed at the end of meiosis.		
	(4) Two haploid cells are formed at the end of meiosis.		
	A Paris Paris Control of Property and the Control of Co		
	A1:1		
	A2:2		
	AZ.Z		
	A3:3		
	A4:4		
Objective Question			
12 11042	The principle driving force behind movement of water in plants is known as	1.0	0.50
	(1) Ionic potential		
	(2) Membrane potential		
	(3) Soil temperature		
	(4) Water potential		
	(4) Water potential		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
Objective Question			
13 11043	Which one of the following categories of methods CANNOT be used for animal virus detection	1.0	0.50
	?		
	(1) Serology		
	(2) Nucleic acid hybridization		
	(3) Hematology		
	(4) Hemagglutination		
	(· / · · · · · · · · · · · · · · · · ·		
	A1:1		
	A2:2		
	NZ.Z		
	A3:3		
	A4:4		
	A4:4		
Objective Question			
11044		1.0	0.50

		Respiratory pathway is considered as a pathway		
		(1) Catabolic		
		(2) Anabolic		
		(3) Amphibolic		
		(4) Fermentative		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object 45	tive Question 11045		1.0	0.50
43	11043	iviation the items of List I with the items in List II	1.0	0.30
		List I List II		
		A. Diabetes insipidus I. Dysregulation of glucagon		
		B. Exophthalmic goiter II. Water loss and dehydration		
		C. Acromegaly III. Grave's disease		
		D. Hyperglycemia IV. Disfigurement of face		
		Choose the correct answer form the options given below :		
		(1) A-I, B-III, C-IV, D-II		
		(2) A-IV, B-III, C-II, D-I		
		(3) A-II, B-I, C-III, D-IV		
		(4) A-II, B-III, C-IV, D-I		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	tive Question			
46	11046	An equilateral triangle of side 6 cm has its corners cut-off to form a regular hexagon. The area	1.0	0.50
		of regular hexagon is		
		(1) $2\sqrt{3}$ cm ²		
		(2) $3\sqrt{2}$ cm ²		
		(3) $6\sqrt{3} \text{ cm}^2$		
		(4) $3\sqrt{6} \text{ cm}^2$		
		A1:1		
		A2:2		
II	II	II I	1	II I

		A3:3		
		A4:4		
	tive Question			
47	11047	A train passes a standing man in 6 seconds and 210 m long platform in 16 seconds. The length and speed of the train, respectively, is	1.0	0.50
		(1) 126 m, 21 m/s		
		(2) 120 m, 20 m/s		
		(3) 110 m, 20 m/s		
		(4) 63 m, 21 m/s		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	tive Question			
48	11048	In an election contested by two candidates, one candidate got 30% of total votes and lost by	1.0	0.50
		500 votes. The total number of votes polled is		
		(1) 1350		
		(2) 1450		
		(3) 1150		
		(4) 1250		
		(4) 1230		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objec	tive Question			
49	11049	$9.6 \times 3.6 \div 7.2 + 10.8 \text{ of } 1/18 - 1/10 = ?$	1.0	0.50
		(1) 15·56		
		(2) 10-56		
		(3) 5⋅3		
		(4) 15·36		
		A1:1		
		A2:2		
		A3:3		

4/20/24	/24, 6:51 PM 4_Live_GATB_E_1-160.html			
		A4:4		
Objec	tive Question		J.L.	
50	11050	The traffic lights at three different road crossings change after every 48 s, 72 s and 108 s, respectively. If they all change simultaneously at 8:20:00 h, when will they change again simultaneously? (1) 8:27:12 h (2) 8:25:10 h (3) 8:26:12 h (4) 8:24:10 h	1.0	0.50
		A1:1 A2:2		
		A3:3		
		A4:4		
Objec	tive Question			
51	11051	The sum of four consecutive even numbers is 107 more than the sum of three consecutive odd numbers. If the sum of smallest odd number and the smallest even number is 55, then what is the smallest even number? (1) 36 (2) 40 (3) 32 (4) 38 A1:1 A2:2 A3:3 A4:4	1.0	0.50
Objec	tive Question			
52	11052	Maximum distance between any two points inside or on cube of side 1 cm is equal to (1) 1 cm (2) $\sqrt{2}$ cm (3) $\sqrt{3}$ cm (4) 6 cm A1:1 A2:2	1.0	0.50

20/24	24, 6:51 PM 4_Live_GATB_E_1-160.html			
		A4:4		
Object	tive Question			
53	11053	Number of natural numbers that can be formed using digits 1, 2, 3, 4, 5, 6, 7 each exactly once so that digits 3, 4 and 5 are always in the middle is equal to	1.0	0.50
		(1) 24		
		(2) 144		
		(3) 5040		
		(4) 720		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
bject	tive Question			
54	11054	The acute angle between hour and minute hands of a wall clock when the time shown by it is	1.0	0.50
		02:15 is equal to		
		(1) 30°		
		(2) 26·25°		
		(3) 22·5°		
		(4) 37·5°		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
) bject	tive Question			
5	11055	Number of squares in a chess-board is equal to	1.0	0.50
		(1) 64		
		(2) 81		
		(3) 204		
		(4) 284		
		A1:1		
		A2:2		
		A2:2 A3:3		

	tive Question		1.0	0.50
56	11056	$x^2 + ax + 1 = 0$ has no real root. Which one of the following is correct?	1.0	0.50
		(1) a ≤ 2		
		(2) a ≥ 2		
		$(3)-2 \leq a < 2$		
		(4) - 2 < a < 2		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	tive Question			
57	11057	There are 30 boys and 60 girls in a class. If the average age of boys is 12 years and average	1.0	0.50
		age of girls is 10 years, what is the average age of the whole class?		
		(1) 10·11 years		
		(2) 10·66 years		
		(3) 11·66 years		
		(4) 11·11 years		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
		A4.4		
Object	tive Question			
58	11058	The diagonals of a rhombus are 16 cm and 12 cm. The side of the rhombus would be	1.0	0.50
		(1) 10 cm		
		(2) 11 cm		
		(3) 8 cm		
		(4) 9 cm		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	tive Question		1.0	0.50

		For x > 0, if variable takes discrete values $x + 4$, $x - 3.5$, $x - 2.5$, $x - 3$, $x - 2$, $x + 0.5$, $x - 0.5$, $x + 5$, then the value of median is (1) $x - 1.25$ (2) $x - 0.5$ (3) $x + 0.5$ (4) $x + 1.25$		
		A3:3		
		A4:4		
	ve Question 11060	The colony of a weather in first increased by 50% and then it is decreased by 50% NAME of the	1.0	0.50
		The salary of a worker is first increased by 5% and then it is decreased by 5% . What is the change in his salary ?	<u>-</u>	
		(1) Decrease in salary 0·25%		
		(2) Increase in salary 0.50%		
		(3) No change in salary		
		(4) Decrease in salary 0.50%		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ve Question			
61	11061	Which one of the following antibody types protects against inhaled and ingested pathogens?	3.0	1.00
		(1) IgG		
		(2) IgD		
		(3) IgM		
		(4) IgA		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obiecti	ve Question			
	11062		3.0	1.00

		Which one of the following hormones transmit their signal via nuclear receptors?					
		(1) Thyroid hormone					
	(1) Thyroid hormone(2) Follicle Stimulating hormone(3) Insulin(4) Luteinizing hormone						
		A1:1					
		A2:2					
		A3:3					
		A4:4					
Objec	tive Question						
63	11063	Which one of the following amino acids is coded by a single codon?	3.0	1.00			
		(1) Valine					
		Which one of the following amino acids is coded by a single codon?					
		(3) Tryptophan (4) Isoleucine					
		A1:1					
		A2:2					
		A3:3					
		A4:4					
Objec	tive Question						
64	11064	Which one of the following statements is NOT correct ?	3.0	1.00			
		(1) Glucose is stored in animals as glycogen.					
		(2) Glucose is stored in plants as starch.					
		(3) Cellulose is a polymer of only glucose.					
		(4) Hemicellulose is a polymer of only glucose.					
		A1:1					
		A2:2					
		A3:3					
		A4:4					
Objec	tive Question						
65	11065		3.0	1.00			
l							

/20/24, 6:51 PM				4_Live_GATB_E_1-160.html		
	Matc	h the items in List I with th	ne iter			
	A.	List I (Organelle) Mitochondria	I.	A CONTRACTOR OF THE PROPERTY O		
	B	Nucleolus	П	transport Protein synthesis		
		Golgi complex	+-	Energy production		
		Endoplasmic reticulum	+	Ribosomal RNA synthesis		
		A-I, B-III, C-II, D-IV	-			
	20.00	A-II, B-III, C-I, D-IV				
	100.00	A-III, B-II, C-I, D-IV				
	(4) A	A-III, B-IV, C-I, D-II				
	A1:1					
	A2:2					
	A3:3					
	A4:4					
Objective Questic	on				1	
66 11066		and afterward manager and property of the		artments of the cell, carbohydrates are added to a protein	3.0	1.00
		g glycoprotein synthesis ?	?			
		1itochondria				
		ysosome				
		lucleus				
	(4) G	Golgi complex				
	A1:1					
	A2:2					
	A3:3					
	A4:4					
Objective Questic	on					
67 11067	100		700000	protein coding open reading frame is replaced with another owing is NOT a likely possibility?	3.0	1.00
	(1) It	may not make any differe	ence	to the protein sequence.		
	(2) It	may cause a single amin	o aci	d mutation.		
	(3) It	may create a premature	stop	codon.		
	(4) T	he mRNA will not be recru	uited	for translation.		
	A1:1					
	A2:2					
I II						

		A3:3		
		A4:4		
Objec	tive Question			
68	11068	The indigenous vaccine, Covaxin against SARS Coronavirus-2 contains	3.0	1.00
		(1) the mRNA expressing viral spike protein		
		(4) the DNA coding for viral spike protein		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objec	Interconstant The indigenous vaccine, Covaxin against SARS Coronavirus-2 contains (1) the mRNA expressing viral spike protein (2) inactivated whole virions (3) the purified viral envelope protein (4) the DNA coding for viral spike protein A1: 1 A2: 2 A3: 3 A4: 4 Antibody diversity is an example of (1) Gene rearrangement (2) Domain swapping (3) Post-translational modification (4) Proteolytic processing A1: 1 A2: 2 A3: 3 A4: 4 A3: 3 A4: 4 Which of the following immunoglobulins primarily pass through the placenta to provide passive immunity to the fetus ? (1) IgM only (2) IgM and IgG (3) IgA and IgG (4) IgG only A1: 1 A2: 2			
69	11069	Antibody diversity is an example of	3.0	1.00
		(1) Gene rearrangement		
		(2) Domain swapping		
		(3) Post-translational modification		
		(4) Proteolytic processing		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objec	tive Question			
70	11070		3.0	1.00
		(1) IgM only		
		(3) IgA and IgG		
		(4) IgG only		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
				25

/20/24, 6:51 PM 4_Live_GATB_E_1-160.html							
Objec	tive Question						
71	11071	Which of the following	pair of	monosaccharides contains epimers of each other?	3.0	1.00	
		(1) D-Mannose and D-	Gluco	se			
		(2) D-Gulose and D-Gl	ucose				
		(3) D-Arabinose and L-	Arabi	nose			
		(4) D-Glucose and D-F	ructos	se			
		A1:1					
		A2:2					
	A2.2						
		A3:3					
		A4:4					
Objec 72	tive Question				3.0	1.00	
/2	11072	Match the items in List	I with		3.0	1.00	
		List I	-	List II			
		A. Prophase	I.	Reformation of the nuclear envelope			
		D. Mataukana	-	around daughter chromosomes			
		B. Metaphase	111.	Separation of the two daughter chromosomes			
		C. Anaphase	III.	Condensation of DNA into chromatids			
		D. Telophase	-	Chromatids line up along an axis			
				Officialities life up along all axis			
		(1) A-III, B-II, C-IV, D-I					
		(2) A-III, B-IV, C-II, D-I					
		(3) A-IV, B-III, C-II, D-I					
		(4) A-II, B-IV, C-I, D-III					
		A1:1					
		A2:2					
		A3:3					
		A4:4					
Object	tive Question						
73	11073	The specificity in an an	tihody	molecule is provided by the	3.0	1.00	
		(1) Light chain variable		AND THE RESERVE OF THE PERSON			
		(2) Light chain constan					
		(3) Heavy chain consta					
		(4) Hinge region	intreg	IOI I-I			
		(+) i mge region					
		A1:1					
		A2:2					

		A3:3		
		A4:4		
Objec	tive Question			
74	11074	Calcium alginate based synthetic seeds tend to lose water rapidly and become hard pellet. This problem can be overcome by	3.0	1.00
		(1) Coating the capsule with polyethylene glycol		
		(2) Preserving the seeds in the airtight packaging till sowing		
		(3) Treating the somatic embryos with sterile water for 3 hours before encapsulation		
		(4) Coating the capsules with Elvax 4260		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objec	tive Question			
75	11075	Which one of the following statements most appropriately describes the concept of 'Codon Bias'?	3.0	1.00
		(1) Some codons for a particular amino acid are used more frequently.		
		(2) There has been an element of human bias for assigning specific codons to an amino acid.		
		(3) There is no codon bias in plants.		
		(4) The usage of codons varies for different proteins in an organism.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objec	tive Question			
76	11076	Which one the following is NOT true for Quantum dots as fluorescent probes in fluorescence microscopy?	3.0	1.00
		(1) They are highly resistant to photobleaching.		
		(2) They can generate fluorescence of different emission wavelengths.		
		(3) They are nanocrystals of different sizes.		
		(4) Their flurorescence properties do not depend on the size of the Quantum dots.		
		(4) Their indicases in position depend on the size of the qualitum dots.		
		A1:1		
		A2:2		

		A3:3		
		A4:4		
	ive Question			
77	11077	Francis & Crick proposed the scheme called Central Dogma in 1958. Which of the following processes was NOT covered in this scheme? (1) Replication (2) Transcription (3) Reverse transcription	3.0	1.00
		(4) Translation		
		(4) Hansiadon		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question	JI.		
78	11078	Beggiatoa, a bacterium depends on organic carbon, inorganic chemicals and inorganic electron donor for its nutrition. On the basis of its nutritional type, it is classified as	3.0	1.00
		(1) Photoorganoheterograph		
		(2) Chemolithoautotroph		
		(3) Chemolithoheterotroph		
		(4) Chemoorganoheterotroph		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obiect	ive Question			
79	11079	Which one the following statements is correct about various microbial culture media?	3.0	1.00
		(1) Mannitol salt agar is an enriched and differential media.		
		(2) Selective components in MacConkey (MAC) agar are eosin Y and methylene blue which inhibits the growth of gram positive bacteria.		
		(3) Blood agar is a differential media which is differentiated on the basis of bacterial ability to produce hemolysins.		
		(4) Bile salts and crystal violet present in the EMB agar media inhibits the gram positive bacteria growth and hence helps to differentiate between gram positive and gram negative.		
		A1:1		

		A3:3		
		A4:4		
Object	ive Question			
80	11080	The microscope which uses lasers to scan the specimen at a specific depth, illuminates one area at a time and blocks stray light to give an image with excellent contrast and resolution is	3.0	1.00
		(1) Differential Interference Contrast (DIC) Microscope		
		(2) Confocal Microscope		
		(3) Scanning Electron Microscope		
		(4) Phase Contrast Microscope		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
81	11081	A biochemist is pelleting down the microsomal fraction from a sample using ultracentrifuge at a	3.0	1.00
		speed of 20000 rpm. What would be RCF if the diameter of the rotor is 7 cm?		
		(1) 15680		
		(2) 31360		
		(3) 7840		
		(4) 3920		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
82	11082	In which of the given centrifuge rotors the value of r_{min} (radius minimum), r_{max} and r_{av} have the minimum deviation?	3.0	1.00
		(1) Fixed-angle rotor only		
		(2) Vertical rotor only		
		(3) Swing rotor only		
		(4) Fixed-angle and Vertical rotors		
		A1:1		
		A2:2		

		A3:3					
		A4:4					
Object 83	ive Question 11083				91.24	3.0	1.00
	11000	Match the		st I w	ith items in List II	0.0	1.00
			List I		List II		
		A. mR			inhibits gene expression		
		B. tRN	NA	II.	carries amino acids for translation		
		C. snF	RNA	III.	provides template for translation		
		D. siR	NA	IV.	involved in RNA splicing		
		(1) A-III,	, B-II, C-IV, [D-I			
		(2) A-II,	B-III, C-I, D-	IV			
		(3) A-IV	, B-III, C-II, [D-I			
		(4) A-II,	B-IV, C-I, D-	-111			
		A1:1					
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
		A2:2					
		A3:3					
		A4:4					
	ive Question						
84	11084	Which of	the following	g cell	types has the highest surface area to volume ratio?	3.0	1.00
		(1) RBC					
		(2) Fibro	blast				
		(3) Kerat	tinocyte				
		(4) Hepa	atocyte				
		A1:1					
		A2:2					
		A3:3					
		A4:4					
Object	ive Question						
85	11085	millimole	of Albumin	and	umin and Aspirin will be required to set a reaction between one 0.5 millimole of Aspirin ? Given the molecular weight of Albumin is birin is 180 Da	3.0	1.00
		(1) 1 g,	1 mg				
		(2) 67 g					
		(3) 0·1 g					
			g, 90 mg				

		A1:1 A2:2 A3:3		
		A4:4		
Object	tive Question			
86	11086	Of the amino acids listed below, which three amino acids can undergo posttranslational modification? (1) Glycine, Leucine, Trypotophan (2) Serine, Threonine, Tyrosine (3) Cysteine, Glutamine, Proline (4) Glutamic acid, Arginine, Methionine A1:1 A2:2	3.0	1.00
		A3:3 A4:4		
Object 87	tive Question 11087		3.0	1.00
		What is the common feature of the following peptides? GKWLY, YLWKG, WGKLY, WLKGY (1) Same sequence (2) Same amino acid composition (3) Same conformation (4) Same interactome A1:1 A2:2 A3:3 A4:4		
	tive Question		3 0	1.00
88	11088	What is the final concentration of NaCl upon mixing 10 ml of 10 mM NaCl with 990 ml of 10 mM NaCl ? (1) 0·1 mM (2) 0·1 M (3) 0·01 M (4) 1·0 mM	3.0	1.00

4/20/24, 6:51 PM 4_Live_GATB_E_1-160.html A1:1 A2:2 A3:3 A4:4 Objective Question 89 11089 3.0 1.00

4/20/24, 6:51 PM	4	4_Live_GATB_E_1-160.html		

Which of the following molecules is a Peptide Nucleic Acid (PNA)?

Bases : A (adenine), T (thymine) G (guanine), C (cytosine)

4/20	/24, 6:51 PM	4_Live_GATB_E_1-160.html		
		Which one of the following is the most effective strategy in delivering a gene of interest in non-proliferating terminally differentiated cells?		
		(1) Adeno-associated viral particle		
		(2) Retroviral particle		
		(3) Calcium chloride		
		(4) Lipofectamine		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ob	jective Question			
92	11092	Given below are two statements — one is labelled as Assertion (A) and the other is labelled as Reason (R):	3.0	1.00
		Assertion (A): Human adeno-associated virus is used to deliver single-stranded DNA		
		as a vaccine that does not require multiple booster doses.		
		Reason (R): Such vaccines are generally administered along with an adenovirus or a		
		herpesvirus to avoid multiple booster doses.		
		In light of the above statements, choose the most appropriate answer from the options given below.		
		(1) Both A and R are correct and R is the correct explanation of A.		
		(2) Both A and R are correct, but R is NOT the correct explanation of A.		
		(3) A is correct, but R is not correct.		
		(4) A is not correct, but R is correct.		
		(4) A lot contest, part is contest.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ob	jective Question			
93	11093	In case of prokaryotes, the start codon is usually preceded by a sequence complementary to the	3.0	1.00
		(1) 16S rRNA		
		(2) 5S rRNA		
		(3) 28S rRNA		
		(4) 18S rRNA		
		(4) 100 11(14)		
		A1:1		
		A2:2		

/20/24	4, 6:51 PM	4_Live_GATB_E_1-160.html		
		A3:3		
		A4:4		
		A4.4		
Objec	tive Question		.	
94	11094	Given below are two statements — one is labelled as Assertion (A) and the other is labelled as	3.0	1.00
		Reason (R):		
		Assertion (A): In the eukaryotic genes, TATA box aids in transcription.		
		Reason (R): The TATA box facilitates formation of pre-initiation complex for transcription initiation.		
		In light of the above statements, choose the most appropriate answer from the options given		
		below.		
		(1) Both A and R are correct and R is the correct explanation of A		
		(2) Both A and R are correct, but R is NOT the correct explanation of A		
		(3) A is correct but R is not correct		
		(4) A is not correct but R is correct		
		A1:1		
		AI.I		
		A2:2		
		A3:3		
		A4:4		
01:				
Objec 95	11095	Which one of the following cell types is involved in retaining the tattoo ink?	3.0	1.00
		(1) Macrophages		
		(2) Melanocytes		
		(3) Keratinocytes		
		(4) Lymphocytes		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objec 96	tive Question		3.0	1.00
90	11096	Which one of the following does NOT refer to secondary structures in protein?	3.0	1.00
		(1) Beta sheet		
		(2) Twist		
		(3) Alpha helix		
		(4) Loop		
		A1:1		

4_Live_GATB_E_1-160.html

		A2:2		
		A2.2		
		A3:3		
		A4:4		
Ohiectiv	ve Question			
	11097	Starting with a single cell, what will be number of cells after 'n' cycles of cell division, given that	3.0	1.00
		in each cycle every cell divides into two cells ?		
		(1) 2 ²		
		(2) n ⁿ		
		(3) n ²		
		(4) 2 ⁿ		
		A1:1		
		A2:2		
		A3:3		
		A4-4		
		A4:4		
Objectiv	ve Question			
	11098	The process of nuclear envelope breakdown during prophase is NOT aided by which one of	3.0	1.00
		the following?		
		(1) Extension of the filopodia		
		(2) Phosphorylation of nuclear membrane proteins		
		(3) Cytoplasmic microtubule dynamics		
		(4) Nuclear lamina disassembly		
		(4) Nuclear lamina disassembly		
		(4) Nuclear lamina disassembly A1:1		
		A1:1 A2:2		
		A1:1 A2:2 A3:3		
		A1:1 A2:2		
Objectiv	ve Ouestion	A1:1 A2:2 A3:3		
	ve Question 11099	A1:1 A2:2 A3:3 A4:4	3.0	1.00
		A1:1 A2:2 A3:3 A4:4 Which one of the following is derived from the ectoderm?	3.0	1.00
		A1:1 A2:2 A3:3 A4:4 Which one of the following is derived from the ectoderm? (1) Muscle	3.0	1.00
		A1:1 A2:2 A3:3 A4:4 Which one of the following is derived from the ectoderm? (1) Muscle (2) Bone	3.0	1.00
		A1:1 A2:2 A3:3 A4:4 Which one of the following is derived from the ectoderm? (1) Muscle (2) Bone (3) Nerve	3.0	1.00
		A1:1 A2:2 A3:3 A4:4 Which one of the following is derived from the ectoderm? (1) Muscle (2) Bone	3.0	1.00
		A1:1 A2:2 A3:3 A4:4 Which one of the following is derived from the ectoderm? (1) Muscle (2) Bone (3) Nerve	3.0	1.00

20/24	4, 6:51 PM	4_Live_GATB_E_1-160.html	II	
		A3:3		
		A4:4		
	tive Question			
100	11100	Regulatory B cells (Bregs) are important mediators of adaptive immunity and function mainly via the secretion of	3.0	1.00
		(1) IL-10		
		(2) IL-2		
		(3) TNF-alpha		
		(4) IFN-gamma		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	tive Question		1	1
101	11101	A polymerase chain reaction yields 1·2 billion copies of DNA in 30 cycles. How many cycles	3.0	1.00
		would be needed to obtain its 300 million copies?		
		(1) 7 cycles		
		(2) 8 cycles		
		(3) 15 cycles		
		(4) 28 cycles		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objec [.]	tive Question			
102	11102	Neoschizomers are the restriction endonucleases with	3.0	1.00
		(1) identical recognition site but different cleavage sites		
		(2) different recognition sites but same cleavage site		
		(3) different recognition site but producing same sticky ends		
		(4) identical recognition and cleavage sites		
		A1:1		
		A2:2		
		A3:3		
				3

.0/24,	6:51 PM	4_Live_GATB_E_1-160.html		
		A4:4		
	ve Question			
03	11103	Telomerase, an RNA-protein complex adds telomeres at the end of chromosomes. What kind of enzymatic activity does it possess ?	3.0	1.00
		(1) DNA-dependent DNA polymerase		
		(2) DNA-dependent RNA polymerase		
		(3) RNA-dependent DNA polymerase		
		(4) RNA-dependent RNA polymerase	3.0	
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ve Question			
04	11104	Which of the following is NOT true for the layers of gastrula?	3.0	1.00
		(1) The linning of the digestive tract will be formed by the endoderm.		
		(2) The bones will be formed by the mesoderm.		
		(3) The nerves will be formed by the ectoderm.		
		(4) The skin will be formed by the mesoderm.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
)biectiv	ve Question			
	11105	Which of the following statement is NOT correct?	3.0	1.00
		(1) Transcription takes place in the nucleus of eukaryotic cells.		
		(2) In prokaryotes mRNA is not capped.		
		(3) Translation in eukaryotes takes place in the nucleus.		
		(4) In prokaryotes, DNA is replicated in the cytoplasm.		
		A1:1		
		A2:2		
		ΠΔ. Δ		
		43.2		
		A3:3 A4:4		

	ive Question			
	ive Question 11106	Rancidity in spoiled foods is mainly due to (1) Proteolytic enzymes (2) Photosynthetic microbes (3) Saccharolytic microbes (4) Lipolytic microbes A1:1	3.0	1.00
		A3:3 A4:4		
	ive Question		16 -	
107	11107	The helical content of a protein can be directly determined using (1) infrared spectrometer (2) fluorescence (3) circular dichroism (4) UV-visible spectrophotometer A1:1 A2:2 A3:3 A4:4	3.0	1.00
	ive Question			
1108	11108	DNA conformation is left handed in (1) DNA B (2) DNA C (3) DNA Z (4) DNA A A1:1 A2:2 A3:3 A4:4	3.0	1.00
Ob: :	ivo Ougatia			
	ive Question 11109		3.0	1.00

4/20/24	l, 6:51 PM	4_Live_GATB_E_1-160.html		
		Which one of the following tissue culture approaches is most appropriate for production of double halploid plants? (1) Protoplast fusion		
		(2) Embryo rescue		
		40 Pt (327) 8 TOP (400) 10 CO (400) 10 CO (400)		
		(3) Anther culture		
		(4) Meristem culture		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	tive Question			
110	11110	Which one of the following is NOT an auxin?	3.0	1.00
		(1) Indole acetic acid (IAA)		
		(2) Indole butyric acid (IBA)		
		(3) 2,4-dichlorophenoxy acetic acid (2,4-D)		
		(4) 6-Benzylaminopurine (BAP)		
		(1)		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	tive Question			
111	11111	Which of the following is a heuristic algorithm that works faster than those driven by dynamic programming?	3.0	1.00
		(1) Needleman-Wunsch		
		(2) Smith-Waterman		
		(3) BLAST		
		(4) Gradient Descent		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ohiect	tive Question			
112	11112		3.0	1.00

		For an imaginary Martian species with three nucleotides (X, Y and Z), how many 3-letter codons are possible?		
		(1) 64		
		(2) 27		
		(3) 9		
		(4) 4		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ive Question			
113	11113	What is the likely number of amino acids in a 11 KDa protein?	3.0	1.00
		(1) 90		
		(2) 100		
		(3) 110		
		(4) 120		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ohiect	ive Question			
	11114	For a normal (Gaussian) distribution, decreasing the spread and increasing the height would	3.0	1.00
		lead to a		
		(1) smaller value of standard deviation		
		(2) higher value of standard deviation		
		The state of the s		
		(3) smaller value of mean		
		(4) higher value of mean		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obiect	ive Question			
115	11115		3.0	1.00

4/20/24	, 6:51 PM	4_Live_GATB_E_1-160.html		
		Which of the following is a method to conduct phylogeny of protein and DNA sequences?		
		(1) BLAST		
		(2) OMNIBUS		
		(3) Maximum likelihood		
		(4) DAVID		
		(4) 57415		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	tive Question			
116	11116	The degree of inhibition for an enzyme catalyzed reaction at a particular inhibitor concentration	3.0	1.00
		is independent of the intitial substrate concentration. This is		
		(1) Un-competitive inhibition		
		(2) Non-competitive inhibition		
		(3) Competitive inhibition		
		(4) Mixed inhibition		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	tive Question	JI.		
117	11117	An enzymatic reaction exhibits Michaelis-Menten Kinetics. What will happen if the	3.0	1.00
		concentration of enzyme is doubled keeping $[S_0] >> [E]$?		
		(1) Both K _m and V _{max} will remain same		
		(2) Both K _m and V _{max} will increase		
		(3) V _{max} will increase; K _m will remain same		
		(4) K _m will increase; V _{max} will remain same		
		() Min Min More Cases, Vinax Min Formani Same		
		A1:1		
		A2:2		
		A2.2		
		A3:3		
		A4:4		
Object	tive Question	<u> </u>		
118	11118		3.0	1.00

		A zero order liquid phase reaction Ak B, is being carried out in a batch with k = 10 ⁻³ moles/min. Reactor volume is 100 L. Initial concentration of A is 0·1 moles/L. What is the earliest time at which A is completely exhausted in the system? (1) 100 min (2) 200 min (3) 300 min (4) 40 min A1:1 A2:2 A3:3 A4:4		
01::1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
	ve Question 11119	If the average diameter of air bubbles in a bioreactor is 2 mm and the gas hold up is 10% then the surface area of gas bubbles per liter of reactor is (1) 30 cm² (2) 300 cm² (3) 3000 cm² (4) 30000 cm² A1:1 A2:2 A3:3 A4:4	3.0	1.00
	ve Question		3.0	1.00
		A good resolution in ion exchange chromatography is obtained when the two proteins have a (1) large difference in binding affinity and large dispersion (2) small difference in binding affinity and large dispersion (3) large difference in binding affinity and small dispersion (4) small difference in binding affinity and small dispersion A1:1 A2:2 A3:3 A4:4		
	ve Question			
121	11121		3.0	1.00

4_Live_GATB_E_1-160.html

		Given below are two statement – one is labelled as Assertion A and the other is labelled as Reason R: Assertion A: Bacterial lipoplysaccharide (LPS) on its own does not induce memory B-cell in humans. Reason R: LPS does not activate T-cell. In light of the above statements, choose the most appropriate answer from the options given below. (1) Both A and R are correct and R is the correct explanation of A (2) Both A and R are correct, but R is NOT the correct explanation of A (3) A is correct but R is not correct (4) A is not correct but R is correct A1:1 A2:2 A3:3 A4:4		
Objec	tive Question			
122	11122	The allergic immune response is characterized by the increased levels of	3.0	1.00
		(1) IgE (2) IgA		
		(3) IgG		
		(4) IgM		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objec	tive Question			
123	11123	The presence of antibody in infected patients serum can be detected by	3.0	1.00
		(1) ELISPOT		
		(2) PCR		
		(3) Northern blot		
		(4) Western blot		
		A1:1		
		A2:2		
		A3:3		

20,24,	, 6:51 PM	4_Live_GATB_E_1-160.html		
		A4:4		
Obiecti	ive Question			
	11124	What will happen to immune cell development if we remove thymus from neonatal mice?	3.0	1.00
		(1) B-cell maturation will be impaired		
		(2) Both B- and T-cell maturation will be impaired		
		(3) T-cell maturation will be impaired		
		(4) No effect on B- and T-cell maturation		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ive Question			
125	11125	A series of spontaneous point mutations that occur gradually resulting in changes in Influenza virus surface antigens over a time is called	3.0	1.00
		(1) genomic instability		
		(2) antigenic shift		
		(3) antigenic drift		
		(4) chromosome translocation		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objecti	ive Question			
.26	11126	Myasthenia gravis is an autoimmune disease where patient makes antibodies for its own	3.0	1.00
		(1) Acetylcholine receptor protein		
		(2) NOD1 protein		
		(3) TLR11 protein		
		(4) RIG-I protein		
		A1:1		
		A2:2		
		A2:2 A3:3		

	<u>'</u>			
bject .27	tive Question	M-4-1-41-34-34-34-34-34-34-34-34-34-34-34-34-34-	3.0	1.00
		Match the items in List I with items in List II List I List II		
		A. Toll like receptor 9 I. Recognition of unmethylated CpG dinucleotide		
		B. T-helper cells II. Recognition of antigen with MCH II complex		
		C. T-cytotoxic cells III. Recongnition of antigen with MCH I complex		
		D. Plasmacytoid dendritic IV. Type I interferon (IFN) cells (pDCs) production		
		(1) A-II, B-III, C-I, D-IV (2) A-I, B-III, C-IV, D-II (3) A-IV, B-II, C-III, D-I (4) A-I, B-II, C-III, D-IV		
		A1:1		
		A2:2		
		A4:4		
Thier	ive Question			
128	11128	What is the length of peptides binding to Major Histocompatibility Complex (MHC) class II molecule ?	3.0	1.00
		(1) 8 – 11 amino acids		
		(2) 21 – 27 amino acids		
		(3) 15 – 20 amino acids		
		(4) 507 amino acids		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ive Question			
129	11129	Tuberculosis (TB) is caused by Mycobacterium tuberculosis. The TB vaccine is made using	3.0	1.00
		(1) Mycobacterium tuberculosis		
				II .
		(2) Mycobacterium bovis (3) Tuberculin		

11132

3.0

1.00

		(1) ssDNA		
		(2) dsDNA		
		(3) ssRNA		
		(4) partially dsDNA		
		() Partially do 2 · II ·		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ve Question 11133	Herpes simplex virus maintains latency in	3.0	1.00
		(1) Neuronal cells		
		(2) Liver cells		
		(3) Epithelial cells (4) Kidney cells		
		(4) Nulley cells		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Objecti	ve Question			
	11134	Pox virus replicates in the	3.0	1.00
		(1) Cytoplasm		
		(2) Nucleus		
		(3) Golgi		
		(4) Mitochondria		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ve Question 11135		3.0	1.00
				50/59

0/24, 6:51 PM	4_Live_GATB_E_1-160.html		
	Which of the following viruses is a plus-sense single-stranded RNA virus?		
	(1) Dengue virus		
	(2) Rotavirus		
	(3) Adenovirus		
	(4) Influenza virus		
	(7/111111111111111111111111111111111111		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
bjective Question		2.0	1.00
36 11136	In N-linked glycoproteins, carbohydrate moiety is attached to which of the following amino acids?	3.0	1.00
	(1) Valine		
	(2) Asparagine		
	(3) Serine		
	(4) Threonine		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
bjective Question		12.0	1.00
37 11137	The catalytic triad of Chymotrypsin is composed of	3.0	1.00
	(1) Asp, Ser, His		
	(2) Arg, Ser, His		
	(3) Glu, Thr, Lys		
	(4) Glu, Asp, Tyr		
	A1:1		
	A2:2		
	A3:3		
	A4:4		
bjective Question			4.02
11138		3.0	1.00

		(1) A					
		(2) B					
		(3) C					
		(4) D					
	A1:1						
	A2:2						
		A3:3					
		A4:4					
	tive Question					3.0	1.00
139	11139	Match	the items in List I with items	in Li	· · · · · · · · · · · · · · · · · · ·	3.0	1.00
			List I	_	List II		
		A.	β-Oxidation	I.	Ribulose Bisphosphate Carboxylase		
		B.	Glycolysis	II.	Phosphofructo kinase-I		
		C.	Gluconeogenesis	III.	Phosphoenolpyruvate carboxylase		
		D.	Calvin cycle	IV.	Thiolase		
		(1) A-	·III, B-IV, C-II, D-I				
		(2) A-	II, B-IV, C-I, D-III				
		(3) A-	·IV, B-II, C-III, D-I				
		(4) A-	-III, B-II, C-IV, D-I				
		A1:1					
		A2:2					
		A3:3					
		A4:4					
Object	tive Question						
140	11140	Lipid F	Rafts are composed of the			3.0	1.00
		(1) ch	olesterol and cardiolipin				
		(2) spl	hingolipid and cardiolipin				
		26. 10. 10.	hingolipid and cholesterol				
		(4) ch	olesterol but no sphingolipid				
		A1:1					
		A2:2					
							52/59

		A3:3			
		A4:4			
	ve Question 11141	Match the items in List I with items in List II		3.0	1.00
			on environment)		
		List I (Pollutant) List II (Impact A. Carbon monoxide I. Greenhouse			
		B. Hydrocarbons II. Photochemica			
		C. Oxides of nitrogen III. Acid rain	al sillog		
		D. Ozone near earth's surface IV. Impaired plan	t growth		
		(1) A-II, B-III, C-IV, D-I			
		(2) A-III, B-II, C-I, D-IV			
		(3) A-II, B-III, C-I, D-IV			
		(4) A-I, B-II, C-III, D-IV			
		A1:1			
		A2:2			
		A3:3			
		A4:4			
01: .					
	ve Question 11142	The presence of excess nutrients in aquatic system w	ill lead to	3.0	1.00
			iii load to		
		(1) Crustacean bloom			
		(2) Algal bloom			
		(3) Coral bloom (4) Lotus bloom			
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Object	ve Question				
143	11143	Which one of the following is commonly used for glucose?	converting cellulose raw materials into	3.0	1.00
		(1) Saccharomyces cerevisiae			
		(2) Acinetobacter radioresistens			
		(3) Trichoderma viride			

		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
	11144	The biocide DDT (a chlorinated hydrocarbon) has a half-life of around	3.0	1.00
		(1) < 1 year		
		(2) 2 – 15 years		
		(3) 16 – 30 years		
		(4) > 30 years		
		(4) - 30 years		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
	11145	Which one of the following waste treatment system is devoid of any packing material, and it	3.0	1.00
		recycles internal biomass based on gravity ?		
		(1) UASB		
		(2) FSSB		
		(3) RBC		
		(4) Trickling filter		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ohiect	ive Question			
	11146	Which of the following is true for a water sample with a BOD value of more than 50 ppm ?	3.0	1.00
		(1) The DO content would be less than 6 ppm		
		(2) The water is clean and potable		
		(3) Aquatic life will thrive		
		(4) The COD of the sample is 25 ppm		
		A1:1		
		A2:2		

4_Live_GATB_E_1-160.html

		A3:3		
		A4:4		
	ive Question 11147	The most widely used method for removing of particulate matter from gas is	3.0	1.00
		(1) Electrostatic precipitation		
		(2) Chemo-osmotic precipitation		
		(3) Magnetostatic precipitation		
		(4) Chemo-electrostatic precipitation		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
148	11148	The acid involved in ocean acidification is	3.0	1.00
		(1) Carbonic acid		
		(2) Sulphuric acid		
		(3) Phosphoric acid		
		(4) Nitric acid		
		(4) Nitric acid		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
	11149	Which of the following continent is the driest one?	3.0	1.00
		(1) Africa		
		(2) Antarctica		
		(3) Australia		
		(4) Europe		
		A1:1		
		A2:2		
		A3:3		

20/24	, 6:51 PM	4_Live_GATB_E_1-160.html		
		A4:4		
Object	ive Question		-	JI
Object 150	ive Question 11150	Enhanced CO ₂ concentration in environment would lead to in plants. (1) increased water uptake and reduced photosynthesis (2) increased photosynthesis and increased water demand (3) decreased photosynthesis and decreased water demand (4) decreased O ₂ emission and no change in photosynthesis A1:1 A2:2 A3:3	3.0	1.00
		A4:4		
	ive Question			
151	11151	In plant mycorrhizal fungi association, what is the most appropriate exchange between two organisms or partners? (1) Plant provides carbon to fungi and in return gets minerals (2) Fungi provides protein to plant and in return gets water	3.0	1.00
		(3) Plant provides minerals to fungi and in return gets carbon		
		(4) Plant and fungi do not exchange anything		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			
152	11152	Pattern of inheritance of flower colour in Mirabilis jalapa is similar to that of	3.0	1.00
		(1) ABO blood group in human beings		
		(2) Flower colour in snapdragon		
		(3) Fur colour in rabbit		
		(4) Skin colour in human beings		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Object	ive Question			

153	11153		3.0	1.00
133	11133	Given below are two statements :	3.0	1.00
		Statement I: In general, a higher auxin : cytokinin ratio will induce root		
		formation under <i>in vitro</i> culture conditions in plants.		
		Statement II: NAA is a cytokinin and BAP is an auxin.		
		In light of the above statements, choose the most appropriate answer from the options given below.		
		(1) Both Statement I and Statement II are correct.		
		(2) Both Statement I and Statement II are NOT correct.		
		(3) Statement I is correct but Statement II is not correct.		
		(4) Statement I is not correct but Statement II is correct.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
)bject .54	ive Question		3.0	1.00
54	11154	Complete the following statement with the correct option	3.0	1.00
		Agrobacterium-mediated plant transformation in the laboratory		
		(1) is not influenced by the genotype of the host plant.		
		(2) always leads to integration of a single copy of the T-DNA in the host cell.		
		(3) is faciliated by the use of selection marker genes to allow preferential growth of transformed cells.		
		(4) requires the expression of opine genes for the production of transgenic plants.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ive Question			
.55	11155	Which one of the following plant tissue culture techniques can be most effectively used for production of virus-free plants?	3.0	1.00
		(1) Protoplast culture		
		(2) Culture of shoot apical meristem		
		(3) Somatic embryogenesis from calli of leaf explants		
		(4) Production of cybrids		
		A1:1		
		A2:2		

4/20/24	4, 6:51 PM	4_Live_GATB_E_1-160.html	4_Live_GATB_E_1-160.html				
		A4:4					
	tive Question						
156	11156	A suicide plasmid vector lacks the following	3.0	1.00			
		(1) antibiotic marker					
		(2) origin of replication					
		(3) multiple cloning sites					
		(4) site for integration					
		A1:1					
		A2:2					
		A3:3					
		A4:4					
Objec	tive Question						
157	11157	Animal gut does NOT possess the enzymes required for digesting	3.0	1.00			
		(1) glycogen					
		(2) starch					
		(3) cellulose					
		(4) proteins					
		A1:1					
		A2:2					
		A3:3					
		A4:4					
Objec	tive Question						
158	11158	Foreign DNA can NOT be transferred into a zygote by which one of the following methods?	3.0	1.00			
		(1) Transduction					
		(2) Microinjection					
		(3) Electroporation					
		(4) Conjugation					
		A1:1					
		A2:2					
		A3:3					
		A4:4					

	ive Question					
159	11159	Leptin receptor is primarily preset (1) Hepatic (2) Muscle (3) Adipose (4) Neuronal A1:1 A2:2 A3:3 A4:4	ent in th	e following tissue	3.0	1.00
	ive Question					
160	11160	Match the items in List I with iter List I A. Beriberi B. Megaloblastic Anemia C. Scurvy D. Pernicious Anemia (1) A-II, B-IV, C-III, D-I (2) A-III, B-II, C-IV, D-I (3) A-I, B-III, C-IV, D-II (4) A-II, B-III, C-IV, D-I	1. 11. 11.	List II Cobalamin Thiamin Folic acid Ascorbic Acid	3.0	1.00
		A1:1 A2:2 A3:3 A4:4				

NATIONAL TESTING AGENCY GRADUATE APTITUDE TEST- BIOTECHNOLOGY 2024

EXAM DATE	20.04.2024	E APITIUDE 1E3	I- BIOTECHNO	SHIFT I	
	DCorrect Answer	QUESTION IDCo	rrect Answer	QUESTION IDCo	rrect Answer
11001	3	11035	3	11069	1
11002	2	11036	3	11070	4
11003	4	11037	4	11071	1
11004	3	11038	1	11072	2
11005	1	11039	3	11073	1
11006	3	11040	2	11074	4
11007	4	11041	1	11075	1
11008	4	11042	4	11076	4
11009	3	11043	3	11077	3
11010	2	11044	3	11078	3
11011	3	11045	4	11079	3
11012	2	11046	3	11080	2
11013	2	11047	1	11081	1
11014	1	11048	4	11082	2
11015	3	11049	3	11083	1
11016	4	11050	1	11084	1
11017	4	11051	4	11085	2
11018	1	11052	3	11086	2
11019	1	11053	2	11087	2
11020	2	11054	3	11088	3
11021	1	11055	3	11089	3
11022	1	11056	4	11090	3
11023	1	11057	2	11091	1
11024	4	11058	1	11092	1
11025	3	11059	1	11093	1
11026	2	11060		11094	1
11027	2	11061	1 4	11095	1
11028	2	11062		11096	2
11029	4	11063	1	11097	4
11030	3	11064	3	11098	1
11031	3	11065	4	11099	3
11032	4	11066	4	11100	1
11033	2	11067	4	11101	4
11034	2	11068	4	11102	1
			2		

QUESTION IDCo	orrect Answer	QUESTION IDCo	rrect Answer
11103	3	11137	1
11104	4	11138	1
11105	3	11139	3
11106	4	11140	3
11107	3	11141	4
11108	3	11142	2
11109	3	11143	3
11110	4	11144	2
11111	3	11145	1
11112	2	11146	1
11113	2	11147	1
11114	1	11148	1
11115	3	11149	2
11116	2	11150	2
11117	3	11151	1
11118	1	11152	2
11119	3	11153	3
11120	3	11154	3
11121	1	11155	2
11122	1	11156	2
11123	4	11157	3
11124	3	11158	4
11125	3	11159	4
11126	1	11160	4
11127	4		
11128	3		
11129	2		
11130	1		
11131	4		
11132	4		
11133	1		
11134	1		
11135	1		
11136	2		