

General Aptitude (GA)

 Q_{\cdot} $^{}$ $_{-}$ Q.5 Carry ONE mark Each

Q.1	We reached the station late, and missed the train.
(A)	near
(B)	nearly
(C)	utterly
(D)	mostly
Q.2	Kind :: : Often : Frequently
	(By word meaning)
(A)	Mean
(B)	Туре
(C)	Cruel
(D)	Kindly

Q.3	A series of natural numbers $F1,F2,F3,F4 \not F5 \not F6 \not F7$, $.9beys_{n+1} = Fn + F^{n-1}$ for all integers $n \ge 2$. If $F6=37$, and $F7=60$, then what is $F1$?
(A)	4
(B)	5
(C)	8
(D)	9

Q.4	A survey for a certain year found that 90% of pregnant women received medical care at least once before giving birth. Of these women, 60% received medical care from doctors, while 40% received medical care from other healthcare providers.
	Given this information, which one of the following statements can be inferred
	with certainty?
(A)	More than half of the pregnant women received medical care at least once from a doctor.
(B)	Less than half of the pregnant women received medical care at least once from a doctor.
(C)	More than half of the pregnant women received medical care at most once from a doctor.
(D)	Less than half of the pregnant women received medical care at most once from a doctor.
Q.5	Looking at the surface of a smooth 3-dimensional object from the outside, which one of the following options is TRUE?
(A)	The surface of the object must be concave everywhere.
(B)	The surface of the object must be convex everywhere.
(C)	The surface of the object may be concave in some places and convex in other places.
(D)	The object can have edges, but no corners.

Q.6 – Q.10 Carry TWO marks Each

Q.6	The country of Zombieland is in distress since more than 75% of its working population is suffering from serious health issues. Studies conducted by competent health experts concluded that a complete lack of physical exercise among its working population was one of the leading causes of their health issues. As one of the measures to address the problem, the Government of Zombieland has decided to provide monetary incentives to those who ride bicycles to work. Based only on the information provided above, which one of the following statements can be logically inferred with certainty?
(A)	All the working population of Zombieland will henceforth ride bicycles to work.
(B)	Riding bicycles will ensure that all of the working population of Zombieland is free of health issues.
(C)	The health experts suggested to the Government of Zombieland to declare riding bicycles as mandatory.
(D)	The Government of Zombieland believes that riding bicycles is a form of physical exercise.

Q.7	Consider two functions of time (),
	f(t) = 0.01 t2
	g(t) = 4 t
	where $0 \le t \le \infty$.
	Now consider the following two statements:
	(i) For some $t > 0$, $g(t) > f(t)$ (ii) There exists a <i>T</i> , such that $f(t) > g(t)$ for all $t > T$.
	Which one of the following options is TRUE?
(A)	only (i) is correct
(B)	only (ii) is correct
(C)	both (i) and (ii) are correct
(D)	neither (i) nor (ii) is correct

Q.8	Which one of the following sentence sequences creates a coherent narrative?
	(i) Once on the terrace, on her way to her small room in the corner, she
	notices the man right away
	(ii) She begins to pant by the time she has climbed all the stairs.
	(111) Mina has bought vegetables and rice at the market, so her bags are
	heavy.
	He was leaning against the parapet, watching the traffic below.
(A)	(i), (ii), (iv), (iii)
(B)	(ii), (iii), (i), (iv)
(C)	(iv), (ii), (i), (iii)
(0)	
(D)	(iii), (ii), (i), (iv)
Q.9	f(x) and $g(y)$ are functions of x and y, respectively fandling
	values of x and y. Which one of the following options isnecessarily TRUE for al
	x and y?
(A)	f(x)=0 and $g(y)=0$
	$f(x) = 0$ and $g(y \neq 0)$
(B)	$f(y) = \sigma(y)$ constant
(D)	f(x) = g(y) = constant
(C)	f (x)□ cons t antand g (y)□ constant
(-)	
(D)	f(x) + g(y) = f(x) - g(y)
(-)	

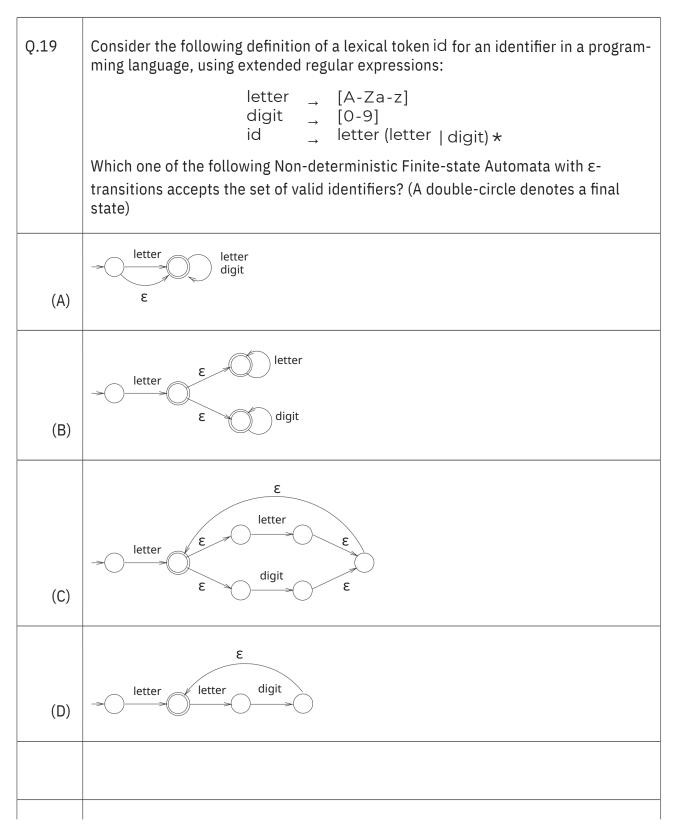
Q.10	Which one of the options best describes the transformation of the 2-dimensional figure P to Q , and then to R , as shown?
	$P \qquad Q \qquad P \qquad R$
(A)	<i>Operation 1</i> : A clockwise rotation by 90° about an axis perpendicular to the plane of the figure <i>Operation 2</i> : A reflection along a horizontal line
(B)	 Operation 1 A counter clockwise rotation by 90° about an axis perpendicular to the plane of the figure Operation 2 A reflection along a horizontal line
(C)	 <i>Operation 1</i>: A clockwise rotation by 90° about an axis perpendicular to the plane of the figure <i>Operation 2</i>: A reflection along a vertical line
(D)	 Operation 1 A counter clockwise rotation by 180° about an axis perpendicular to the plane of the figure Operation 2 A reflection along a vertical line

Q.11 – Q.35 Carry ONE mark each.

Q.11	Consider the following statements regarding the front-end and back-end of a compiler. S1: The front-end includes phases that are independent of the target hardware. S2: The back-end includes phases that are specific to the target hardware. S3: The back-end includes phases that are specific to the programming language used in the source code. Identify the CORRECT option.
(A)	Only S1 is TRUE.
(B)	Only S1 and S2 are TRUE.
(C)	S1, S2 ,and S3 are all TRUE.
(D)	Only S1 and S3 are TRUE.

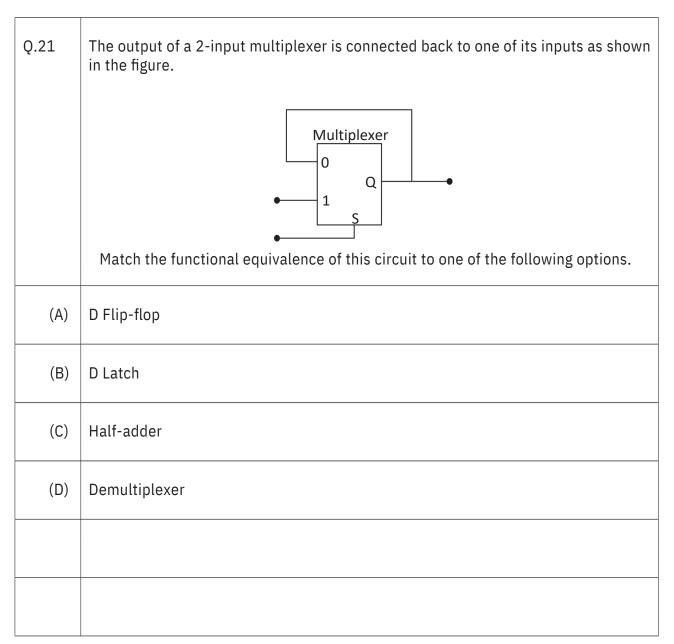
Q.12	Which one of the following sequences when stored in an array at lo cations A[1], , A[10] forms a max-heap?
(A)	23, 17, 10, 6, 13, 14, 1, 5, 7, 12
(B)	23, 17, 14, 7, 13, 10, 1, 5, 6, 12
(C)	23, 17, 14, 6, 13, 10, 1, 5, 7, 15
(D)	23, 14, 17, 1, 10, 13, 16, 12, 7, 5

Q.13	Let SLLdel be a function that deletes a node in a singly-linked list given a pointer to the node and a pointer to the head of the list. Similarly, let DLLdel be another function that deletes a node in a doubly-linked list given a pointer to the node and a pointer to the head of the list. Let n denote the number of nodes in each of the linked lists. Which one of the following choices is TRUE about the worst-case time
	complexity of SLLdel and DLLdel?
(A)	SLLdeils 0 (1) and DLLdeils 0(n)
(B)	Both SLLdeand DLLdeare 0 (log (n))
(C)	Both SLLdealnd DLLdealre 0 (1)
(D)	SLLdeils 0 (n) and DLLdeils 0 (1)


Q.14	Consider the Deterministic Finite-state Automaton (DFA) A shown below. The DFA runs on the alphabet {0, 1}, and has the set of states {s, p, q, r}, with s being
	the start state and p being the only final state.
	Which one of the following regular expressions correctly describes the language accepted by $_{\mbox{A?}}$
(A)	1(0 * 11)
(B)	0(0 + 1) *
(C)	1(0 + 11)*
(D)	1(110*)*

Q.15	The Lucas sequence Ln is defined by the recurrence relation:
	$Ln=Ln -1+Ln-2$, for $n \ge 3$,
	with L1 = 1 and L2 = 3.
	Which one of the options given is TRUE?
(A)	$L_{n} = \left(\frac{1 + \sqrt[4]{5}}{2}\right)n \left(+ \frac{1^{-\sqrt{5}}}{2}\right)n$ ()) n (-)) n
(B)	$L_{n} = \begin{pmatrix} \frac{1+\sqrt{5}}{2} & (1+\sqrt{5}) \\ \frac{1+\sqrt{5}}{2} & (1+\sqrt{5}) \\ \frac{1-\sqrt{5}}{3} & (1+\sqrt{5}) \\ 1-\sqrt{$
(C)	$L_{n} = \frac{1 + \sqrt[4]{5}}{2} \qquad \frac{1^{-\sqrt{5}}}{3}$
(D)	$L_{n} = \frac{1 + \sqrt[4]{5}}{2} \qquad \frac{1^{-\sqrt{5}}}{2}$

Q.16	Which one of the options given below refers to the degree (or arity) of a relation in relational database systems?
(A)	Number of attributes of its relation schema.
(B)	Number of tuples stored in the relation.
(C)	Number of entries in the relation.
(D)	Number of distinct domains of its relation schema.


Q.17	Suppose two hosts are connected by a point-to-point link and they are configured to use Stop-and-Wait protocol for reliable data transfer. Identify in which one of the following scenarios, the utilization of the link is the lowest.
(A)	Longer link length and lower transmission rate
(B)	Longer link length and higher transmission rate
(C)	Shorter link length and lower transmission rate
(D)	Shorter link length and higher transmission rate

Q.18	Let $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \\ 3 & 4 & 1 & 2 \\ 2 & 3 & 4 & 1 \end{bmatrix}$ and
	and $B = \begin{bmatrix} \begin{vmatrix} 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix}$ $B = \begin{bmatrix} 1 & 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{bmatrix}$ Let det(A) and det(B) denote the determinants of the matrices A and B, respectively.
	Which one of the options given below is TRUE?
(A)	det() = det()
(B)	det() = -det()
(C)	det(() = 0
(D)	det(AB) = det(A) + det(B)

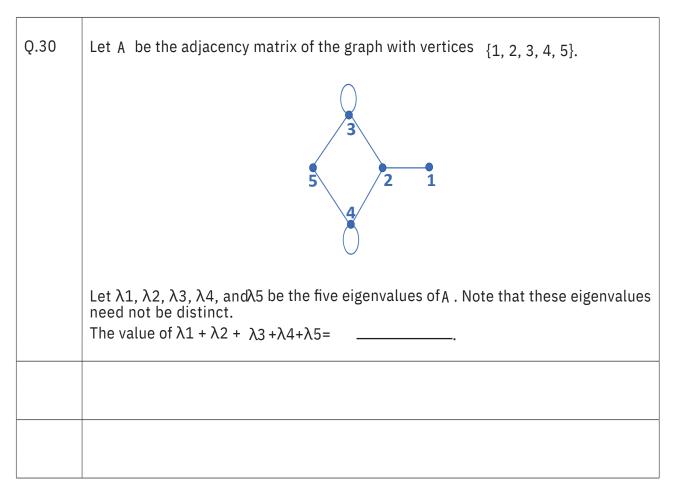
GATE 2023 Computer Science and Information Technology (CS)	

Q.20	An algorithm has to store several keys generated by an adversary in a hash table. The adversary is malicious who tries to maximize the number of collisions. Let k be the number of keys, m be the number of slots in the hash table, and k > m. Which one of the following is the best hashing strategy to counteract the adversary?
(A)	Division method, i.e., use the hash function $h(k) = k$ mod m.
(B) N	Iultiplicationmethod,i.e.,usethehashfunction h(k) = m(kA — kA), where A is a carefully chosen constant.
(C)	Universal hashing method.
(D)	If k is a prime number, use Division method. Otherwise, use Multiplication method.

Q.22	Which one or more of the following need to be saved on a context switch from one thread (T1) of a process to another thread (T2) of the same process?
(A)	Page table base register
(B)	Stack pointer
(C)	Program counter
(D)	General purpose registers

Q.23	Which one or more of the following options guarantee that a computer system will transition from user mode to kernel mode?
(A)	Function Call
(B)	mallo Ca ll
(C)	Page Fault
(D)	System Call

Q.24	Which of the following statements is/are CORRECT?
(A)	The intersection of two regular languages is regular.
(B)	The intersection of two context-free languages is context-free.
(C)	The intersection of two recursive languages is recursive.
(D)	The intersection of two recursively enumerable languages is recursively enumerable.


Q.25	Which of the following statements is/are INCORRECT about the OSPF (Open Shortest Path First) routing protocol used in the Internet?
(A)	OSPimplements Bellman-Ford algorithm to find shortest paths.
(B)	OSP E ses Dijkstra's shortest path algorithm to implement least-cost path routing.
(C)	OSPIs used as an inter-domain routing protocol.
(D)	OSPImplements hierarchical routing.

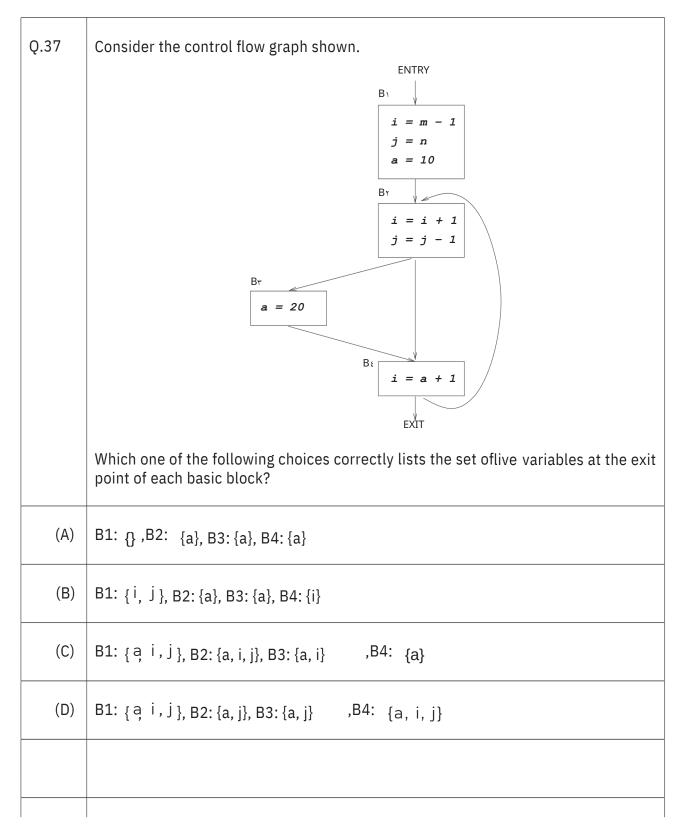
Q.26	Geetha has a conjecture about (integers,whichisoft)heform
	$\forall xP(x) \Longrightarrow \exists yQ(x,y),$
	where P is a statement about integers, and Q is a statement about pairs of integers. Which of the following (one or more) option(s) would imply Geetha's conjecture?
(A)	$\exists x P(x) \land \forall Q(x, y))$
(B)	∀ x yQ(x,y)
(C)	$\exists y \; x \forall p \; x() = \Rightarrow \; Q(x, y))$
(D)	$\exists x P(x) \land \exists Q (x', y))$

Q.27	Which one or more of the following CPU scheduling algorithms can potentially cause starvation?
(A)	First-in First-Out
(B)	Round Robin
(C)	Priority Scheduling
(D)	Shortest Job First

Q.28	Let $f(x) = x3 + 15x2 - 33x - 36$
	be a real-valued function.
	Which of the following statements is/are TRUE?
(A)	f 🕼 does not have a local maximum.
(B)	f 🕼 has a local maximum.
(C)	f 🕼 does not have a local minimum.
(D)	f 🕼 has a local minimum.

Q.29	Let f and g be functions of natural numbers given by f (n) = n and g(n)=n2 . Which of the following statements is/are TRUE?
(A)	f ∈0(g)
(B)	$ \begin{array}{c} \in \\ f & \Omega(g) \\ \in \end{array} $
(C)	$f \in O(g)$
(D)	f Θ(g)

Q.31	The value of the definite integral		
	$3 \int 2 \int 1 (4x^2y - z^3dzdd y x)$		
	is (Rounded off to the nearest integer)		


Q.32	A particular number is written as 132 in radix-4 representation. The same number inradix-5representationis

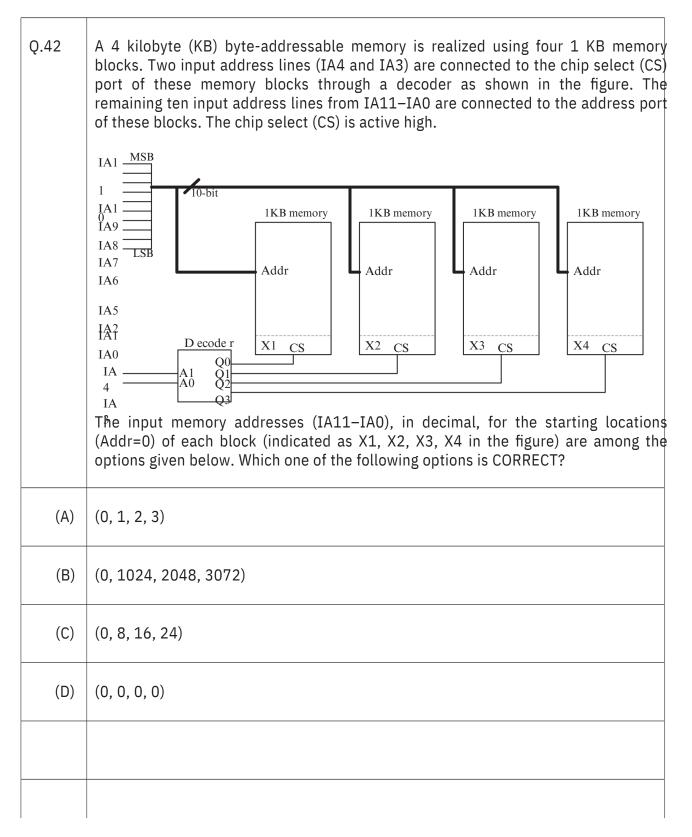
Q.33	Consider a 3-stage pipelined processor having a delay of 10 ns (nanoseconds), 20 ns, and 14 ns, for the first, second, and the third stages, respectively. Assume that there is no other delay and the processor does not suffer from any pipeline hazards. Also assume that one instruction is fetched every cycle. The total execution time for executing 100 instructions on this processor is ns.

Q.34	A keyboard connected to a computer is used at a rate of 1 keystroke per second The computer system polls the keyboard every 10 ms (milli seconds) to check for a keystroke and consumes 100 μ s (micro seconds) for each poll. If it is determined after polling that a key has been pressed, the system consumes an additional 200 μ s to process the keystroke. Let T1 denote the fraction of a second spent in polling and processing a keystroke. In an alternative implementation, the system uses interrupts instead of polling. An interrupt is raised for every keystroke. It takes a total of 1 ms for servicing an interrupt and processing a keystroke. Let T2 denote the fraction of a second spent in servicing the interrupt and processing a keystroke. Theratio $\frac{T}{1}$ is(Roundedofftoonedecimalplace) T
	2

Q.36 – Q.65 Carry TWO mark each.

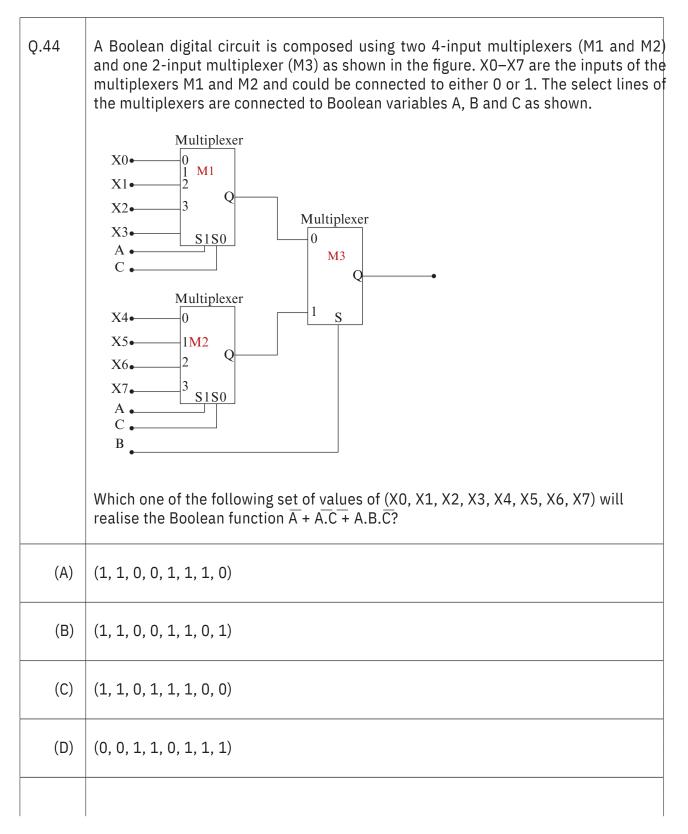
Q.36	Consider the following program:				
	int main() int f1() int f2(int X) int f3()				
	{				
	f2(2); } if (X==1) }				
	f3(); returnf1();				
	return(0); else } return(X*f2(X-1));				
	}				
	Which one of the following options represents the activation tree corresponding to the main function?				
	main				
	f1 f2 f3				
	f3 f2				
	$f_3 f_1$				
(A)	15 11				
	main				
	f1 f2 f3				
(B)	f3 f1				
	main				
	fĺ				
	fŹ				
(C)	$f\vec{3}$ $f\vec{1}$				
	main				
	f1 f2 f3				
	$\begin{array}{c} f1 f2 f3 \\ \hline f3 f2 f1 \end{array}$				
(D)	13 12 11				

Page 30 of 83


GATE 202	GATE 2023 Computer Science and Information Technology (CS)			

Q.38	Consider the two functions incr and decr shown below.incr(){wait(s);X = X+1;signal(s);}There are 5 threads each invoking incr once, and 3 threads each invoking decronce, on the same shared variable X. The initial value of is×10.Suppose there are two implementations of the semaphore ş as follows:I-1: s is a binary semaphore initialized to 1.I-2: s is a counting semaphore initialized to 2.Let V1, V2 be the values of X at the end of execution of all the threads withimplementations I-1, I-2, respectively.Which one of the following choices corresponds to the minimum possible values of V1, V2, respectively?	
(A)	15,7	
(B)	7,7	
(C)	12,7	
(D)	12,8	

Q.39	Consider the context-free grammarG below		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	where S and X are non-terminals, and and are perminal symbols. The starting non-terminal is S.		
	Which one of the following statements is CORRECT?		
(A)	The language generated by G is (a + b) *		
(B)	The language generated by G is $a (a + b)b $		
(C)	The language generated by G is a to (*a + b)		
(D)	The language generated by G is not a regular language		


Consider the pushdown automaton (PDA) P below, which runs on the input alphabet { \perp ,A}, and has three states {s,p,q}, with s being the start state. A transition from state u to state v, labelled c/X/y, where c is an input symbol or ε , X is a stack symbol, and y is a string of stack symbols, represents the fact that in state u, the PDA can read c from the input, with X on the top of its stack, pop X from the stack, push in the string y on the stack, in the state v. In the initial configuration, the stack has only the symbol
The PDA accepts by empty stack. $a/ \perp/A \perp$ $a/A/AA$ $b/A/\epsilon$ $b/A/\epsilon$ $\epsilon/A/\epsilon$ $\epsilon/A/\epsilon$ $\epsilon/A/\epsilon$ $\epsilon/A/\epsilon$
Which one of the following options correctly describes the language accepted by P?
{a ^m b ⁿ 1≤mandn <m}< td=""></m}<>
0≤n≤m} {a ^m b ⁿ 0≤mand0≤n}
{a ^m b ⁿ
_{{a} ^m ⁰ ≤m}∪{bn 0≤n}

Q.41	Consider the given C-code and its corresponding assembly code, with a few operands U1–U4 being unknown. Some useful information as well as the semantics of each unique assembly instruction is annotated as inline comments in the code. The memory is byte-addressable.		
	//C-code ;assembly-cod@indicatescomment ;r1-r5 are 32-bitinteg registers ;initialize r1=0, er ;initialize r3, r4r2=10baseaddressof with		
	int a[10], b[10], i; // imst 32-bit for (i=0; i<10;i++) a[i] = b[i] * 8;	L01 je r1, r2, end ;if(r1==r2) gotoend : q r5, 0(r4) ;r5 < Memorsory[r4+0] L02 lw r5, r5, U1 ;Memorsor[r3U1 : sh r5, 0(r3) +0] < <- r5 L03 l r3, r3, U ;r3 <- r3+U2 : sw r4, r4, 2 L0 ad r1, r1, U 4: d U 3 ;gotoU4 L05 ad 4 1	
		options is d CORRECT replacement for operands in 4) in ^l the ab어e assembly code? 6: d	
(A)	(8, 4, 1, LO2)	L0 jm 7: p L0 en	
(B)	(3, 4, 4, LO1)	8: d LO 9:	
(C)	(8, 1, 1, LO2)		
(D)	(3, 1, 1, LOI)		

GATE 202	23 Computer Science and Information 1	echnology (CS)

Q.43	Consider a sequential digital circuit consisting of T flip-flops and D flip-flops as shown in the figure. CLKIN is the clock input to the circuit. At the beginning, Q1, Q2 and Q3 have values 0, 1 and 1, respectively.		
	$\begin{array}{c} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		
(A)	(0, 0, 1)		
(B)	(1, 0, 0)		
(C)	(1, 0, 1)		
(D)	(1, 1, 1)		

Page 39 of 83

	•		

Q.45	Consider the IEEE-754 single precision floating point numbers $P=0\timesC1800000$ and $Q=0\times3F5C2EF4$. Which one of the following corresponds to the product of these numbers (i.e., $P \times Q$), represented in the IEEE-754 single precision format?
(A)	0x404C2EF4
(B)	0x405C2EF4
(C)	0xC15C2EF4
(D)	0xCl4C2EF4

Q.46	Let A be a priority queue for maintaining a set of elements. Suppose A is implemented using a max-heap data structure. The operation Extract-Max(A) extracts and deletes the maximum element from A. The operation Insert(A,key) inserts a new element key in A. The properties of a max-heap are preserved at the end of each of these operations. When A contains n elements, which one of the following statements about the worst case running time of these two operations is TRUE?
(A)	Both Extract-Max(A) and Insert(Akey) run in 0(1).
(B)	Both Extract-Max(Àand Insert(Akey) run in 0 (log(n)).
(C)	Extract-Max(A) runs in 0(1) whereas Insert(Akey) runs in 0(n).
(D)	Extract-Max(A) runs in 0(1) whereas Insert(Akey) runs in 0(log(n)).

Q.47	Consider the C function fooand the binary tree shown. typedef struct node {
	int val; struct node *left, *right; } node;
	<pre>int foo(node *p){ int retval; if (p == NULL) return 0; else {</pre>
	retval = p->val + foo(p->left) + foo(p->right); printf("%d ", retval); return retval; }
	When foo is called with a pointer to the root node of the given binary tree, what will it print?
(A)	385131110
(B)	358101113
(C)	3816132450
(D)	3168502413

Q.48	 LetU = 1,2ç,n }, where n is a large positive integer greater than 1000. Let k be a positive integer less than n. Let A,B be subsets of U with andA B_n Ø. We say that a permutation of U separates A from B if one of the following is true. All members of A appear in the permutation before any of the members of B. All members of B appear in the permutation before any of the members of A.
(A)	n!
(B)	$\binom{2}{2k} \binom{n}{2k} \binom{n}{2k} \binom{2}{2k} \binom{n}{2k} \binom{2}{2k} \binom{n}{2k} \binom$
(C)	2k n 2k)! (k!)2
(D)	$2(\frac{1}{2k}n (n - 2k)! (k!)^2$

wherea1,a2 \in A. Let $E = \{[x] : x \in A\}$ be the set of all the equivalence classes under . Define a new mapping F : $E \rightarrow Bas$						
F([x])=f(x), foralltheequivalenceclasses[x]in E.						
F is an onto (or surjective) function.						
F is a one-to-one (or injective) function.						

Q.50	Suppose you are asked to design a new reliable byte-stream transport protocol like TCP. This protocol, named myTCP, runs over a 100 Mbps network with Round Trip Time of 150 milliseconds and the maximum segment lifetime of 2 minutes. Which of the following is/are valid lengths of the Sequence Number field in the myTCP header?
(A)	30 bits
(B)	32 bits
(C)	34 bits
(D)	36 bits

Q.51	Let X be a set and 2X denote the powerset of X. Define a binary operation Δ on 2X as follows:
	$A\Delta B = (A -B) \cup (B-A).$
	Let H = $(2X, \Delta)$. Which of the following statements about H is/are correct?
(A)	H is a group.
(B)	Every element in H has an inverse, but H is NOT a group.
(C)	For every A $\in \overset{\times}{2}$, the inverse of A is the complement of A.
(D)	For every A $\in \frac{2}{x}$, the inverse of A is A.

Suppose in a web browser, you click on the www.gate-2023.in URL. The browser cache is empty. The IP address for this URL is not cached in your local host, so a DNS lookup is triggered (by the local DNS server deployed on your local host) over the 3-tier DNS hierarchy in an iterative mode. No resource records are cached anywhere across all DNS servers.				
Let RTT denote the round trip time between your local host and DNS servers in the DNS hierarchy. The round trip time between the local host and the web server hosting www.gate-2023.in is also equal to RTT. The HTML file associated with the URL is small enough to have negligible transmission time and negligible rendering time by your web browser, which references 10 equally small objects on the same web server.				
Which of the following statements is/are CORRECT about the minimum elapsed time between clicking on the URL and your browser fully rendering it?				
7 RTTs, in case of non-persistent HTTP with 5 parallel TCP connections.				
5 RTTs, in case of persistent HTTP with pipelining.				
9 RTTs, in case of non-persistent HTTP with 5 parallel TCP connections.				
6 RTTs, in case of persistent HTTP with pipelining.				

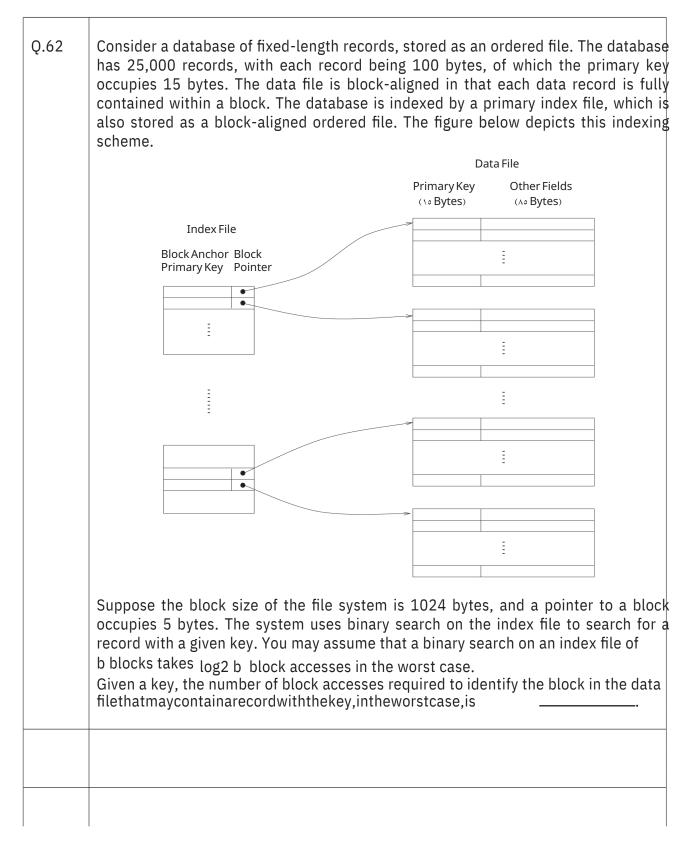
Q.53	Consider a random experiment where two fair coins are tossed. Let A be the event that denotes HEAD on both the throws, B be the event that denotes HEAD on the first throw, and C be the event that denotes HEAD on the second throw. Which of the following statements is/are TRUE?
(A)	A and B are independent.
(B)	A and C are independent.
(C)	B and C are independent.
(D)	Prob(B C) = Prob(B)

Q.54	Consider functions Function_1 and Function_2 expressed in pseudocode as follows:						
	Function_1Function_2while n > 1 dofori = 1 to 100 *n dofori=ltondofori=ltondox=x+1;end forn = n/2;nd while						
	Let f1(n) and f2(n) denote the number of times the statement " $x = x+1$ " is executed in Function 1_and Function 2, respectively.						
	Which of the following statements is/are TRUE?						
(A)	$f1(n) \in \Theta(f2(n))$						
(B)	$ \begin{array}{c} \in \\ f1(n) & o(f 2(n)) \\ \in \end{array} $						
(C)	$f1(n) \in \omega(f 2(n))$						
(D)	f1 (n) O(n)						

Let G be a simple, finite, undirected graph with vertex set $\{v1,, vn. Le\}\Delta(G)$ denote the maximum degree of G and let N = $\{1, 2,\}$ denote the set of all possible colors. Color the vertices of G using the following greedy strategy: fori=1,,n
$color(vi) \leftarrow min{j \in N : no neighbour of vi is colored j }$
Which of the following statements is/are TRUE?
This procedure results in a proper vertex coloring of G.
The number of colors used is at most $\Delta(G)+1$.
The number of colors used is at most $\Delta(G)$.
The number of colors used is equal to the chromatic number of G.

Q.56	Let $U = \{1, 2, 3\}$. Let 2U denote the powerset of $U_{(A,B)}$ is an edge in G f and G whose vertex set is 2U. For any A,B if (i) A = B, and (ii) either A B or B A. For any vertex A in G, the set of all possible orderings in which the vertices of G can be visited in a Breadth Fin Search (BFS) starting from A is denoted by B (A).					
	If Ødenotestheemptyset,thenthecardinalityof B0					

Q.57 Consider the following two-dimensional array D in the C programming language, which is stored in row-major order: int D[128][128]; Demand paging is used for allocating memory and each physical page frame holds 512 elements of the array D. The Least Recently Used (LRU) page-replacement policy is used by the operating system. A total of 30 physical page frames are allocated to a process which executes the following code snippet: for (int i = 0; i < 128; i++) for (int j = 0; j < 128; j++) D[j][i] *= 10; The number of page faults generated during the execution of this code snippet is


Q.58	Consider a computer system with 57-bit virtual addressing using multi-level tre- structured page tables with L levels for virtual to physical address translation. The page size is 4 KB (1 KB = 1024 B) and a page table entry at any of the level occupies 8 bytes. ThevalueofLis				

Г

Q.59 Consider a sequence a of elements a0 = 1, a1 = 5, a2 = 7, a3 = 8, a4 = 9, and a5 = 2 The following operations are performed on a stack S and a queue Q, both of which are initially empty. I: push the elements of a from a0 to a5 in that order into S. II: enqueue the elements of a from a0 to a5 in that order into Q. III: pop an element from S. IV: dequeue an element from Q. V: pop an element from Q. VI: dequeue an element from Q. VII: dequeue an element from Q. VII: dequeue an element from Q and push the same element into S. VIII: Repeat operation VII three times. IX: pop an element from S. X: pop an element from S. VIII: Repeat operation VII three times. IX: pop an element from S. X: pop an element from S. X: pop an element from S. X: pop an element from S. X: pop an element from S. X: pop an element from S. X: pop an element from S.							
 II: enqueue the elements of a from a0 to a5 in that order into Q. III: pop an element from S. IV: dequeue an element from Q. V: pop an element from S. VI: dequeue an element from Q. VII: dequeue an element from Q and push the same element into S. VIII: Repeat operation VII three times. IX: pop an element from S. X: pop an element from S. 	Q.59						
 III: pop an element from S. IV: dequeue an element from Q. V: pop an element from S. VI: dequeue an element from Q. VII: dequeue an element from Q and push the same element into S. VIII: Repeat operation VII three times. IX: pop an element from S. X: pop an element from S. 		I: push the elements of a from a0 to a5 in that order into S.					
 IV: dequeue an element from Q. V: pop an element from S. VI: dequeue an element from Q. VII: dequeue an element from Q and push the same element into S. VIII: Repeat operation VII three times. IX: pop an element from S. X: pop an element from S. 		II: enqueue the elements of a from a0 to a5 in that order into Q.					
V: pop an element from S. VI: dequeue an element from Q. VII: dequeue an element from Q and push the same element into S. VIII: Repeat operation VII three times. IX: pop an element from S. X: pop an element from S.		III: pop an element from S.					
 VI: dequeue an element from Q. VII: dequeue an element from Q and push the same element into S. VIII: Repeat operation VII three times. IX: pop an element from S. X: pop an element from S. 		IV: dequeue an element from Q.					
 VII: dequeue an element from Q and push the same element into S. VIII: Repeat operation VII three times. IX: pop an element from S. X: pop an element from S. 		V: pop an element from S.					
VIII: Repeat operation VII three times. IX: pop an element from S. X: pop an element from S.		VI: dequeue an element from Q.					
IX: pop an element from S. X: pop an element from S.		VII: dequeue an element from Q and push the same element into S.					
X: pop an element from S.		VIII: Repeat operation VII three times.					
		IX: pop an element from S.					
ThetopelementofSafterexecutingtheaboveoperationsis		X: pop an element from S.					
		ThetopelementofSafterexecutingtheaboveoperationsis					

Q.60 Consider the syntax directed translation given by the following grammar and semantic rules. Here N, I, F and B are non-terminals. N is the starting non-terminal, and #, 0 and 1 are lexical tokens corresponding to input letters "#", "0" and "1", respectively. X.val denotes the synthesized attribute (a numeric value) associated with a non-terminal X. I1 and F1 denote occurrences of I and F on the right hand side of a production, respectively For the tokens 0 and 1, 0.val = 0 and 1.val = 1. $\#_{H}^{\mu} = 1$ Ν I:val≡62I1,val)+B.val 1 F.val=(B.¹/₂/al+Fval 1.) F.val=1B₃val F B:val≡9:val 1 F The value computed by the translation scheme for the input string В 10#011 is 🗕

Q.61	Consider t key of this			named S	tuderi n a relational database. The primary
	Student				
	<u>rollNum</u> name		gender marks		
	1	Naman	М	62	
	2	Aliya	F	70	
	3	Aliya	F	80	
	4	James	М	82	
	5	Swati	F	65	
	The SQL query below is executed on this database. SELEC FROISITUDENT WHEGRENDER= 'F' AND marks 65; The number of rows returned by the query is				

GATE 202	23 Computer Science and Information 1	echnology (CS)

Q.63	Consider the language L over the alphabet {0, 1}, given below:					
	L = {w \in {0, 1} * w does not contain three or more consecutive 1's}.					
	The minimum number of states in a Deterministic Finite-State Automaton (DFA) forLis					

Q.64	An 8-way set associative cache of size 64 KB (1 KB = 1024 bytes) is used in a system with 32-bit address. The address is sub-divided into TAG, INDEX, and BLOCK OFFSET.
	ThenumberofbitsintheTAGis

Q.65	The forwarding table of a router is shown below.							
		Subnet	Subnet Mask	Interface ID				
		Number	255.255.0.0	1				
		200.150.0.0	255.255.224.0	2				
		200.150.64.0	255.255.255.0	3				
		200.150.68.0	255.255.255.22	4				
		200.150.68.64	4	0				
Default A packet addressed to a destination address 200.150.68.118 arrives at ItwillbeforwardedtotheinterfacewithID								